网站建设资讯

NEWS

网站建设资讯

学会利用大数据去解决问题

在经历了互联网泡沫和经济危机之后,世界各国,尤其是发达国家开始重新意识到制造业的重要性,也在重新审视自身竞争力的优劣势。第四次科技革命的到来为各个国家提供了发展和转型的机遇,也使他们面临竞争力格局变化的挑战,智能制造成为世界各国竞争的新战场。无论是德国提出的“工业4. 0 国家战略”,美国提出的“国家制造业创新网络(NNMI)计划”,或是日本的“工业价值链计划(IVI)”等,无不围绕着制造业这个核心。中国改革开放三十多年来,综合国力和人民生活水平的提升过程中,制造业的快速发展起到了决定性的作用,中国成为世界制造业的新中心,也连续几年成为“世界制造力竞争指数”最强的国家。在新一轮的制造业革命中,中国也感受到来自世界各国新技术战略的压力,相继提出“中国制造2025”,“互联网+ ”和“供给侧改革”等多项措施。

成都创新互联是一家专业提供巴楚企业网站建设,专注与网站建设、做网站、H5建站、小程序制作等业务。10年已为巴楚众多企业、政府机构等服务。创新互联专业网站制作公司优惠进行中。

每一次制造革命的进步,除了我们能够可见的技术要素以外,更重要的是这背后的制造哲学的进步。现代制造业从第二次科技革命到现在,经历了标准化、合理化+ 规范化、自动化+集成化、网络化+ 信息化四个阶段。这背后的制造哲学可以概括为:以低成本生产高质量的产品;通过全流程改善降低浪费、次品和事故;通过产品全生命周期的数据管理,为用户提供所需要的能力和服务。在以上几个阶段的基础上,现在的制造系统正处在向智能化+ 客制化迈进的阶段,目标是实现零故障和预测型的生产系统,并在无忧的生产环境中以低成本快速实现用户的客制化需求。

那么,如何实现智能制造?有些人说大数据是实现智能制造的核心技术,也有人说要靠互联网、信息物理系统技术(CPS),或是人工智能和机器人等。如果大数据是智能制造的核心驱动力,那么我们该怎么去定义和使用大数据?关于这个问题,我在《工业大数据》这本书中曾表达过一个观点:大数据并不是目的,而是看待问题的一种途径和解决问题的一种手段。通过分析数据,可以预测需求、预测制造、解决和避免不可见问题的风险,和利用数据去整合产业链和价值链,这才是大数据的核心目的。

大数据与智能制造之间的关系可以总结为:制造系统中问题的发生和解决的过程中会产生大量数据,通过对这些数据的分析和挖掘可以了解问题产生的过程、造成的影响和解决的方式,这些信息被抽象化建模后转化成知识,再利用知识去认识、解决和避免问题,核心是从以往依靠人的经验(experiencebased),转向依靠挖掘数据中隐性的线索(evidence based),使得制造知识能够被更加高效和自发地产生、利用和传承。因此,问题和知识是目的,而数据则是一种手段。今天我们来谈利用大数据实现智能制造,是因为大数据已经成为一个日益明显的现象,而在制造系统和商业环境变得日益复杂的今天,利用大数据去解决问题和积累知识或许是更加高效和便捷的方式。

大数据的目的并不是追求数据量大,而是通过系统式地数据收集和分析手段,实现价值的大化。所以推动智能制造的并不是大数据本身,而是大数据的分析技术。在新制造革命的转型中,是否能够更加有效地利用好大数据,决定了能否在竞争中脱颖而出。在现在的制造中,存在着许多无法被定量、无法被决策者掌握的不确定因素,这些不确定因素既存在于制造过程中,也存在于制造过程之外的使用过程中。前三次工业革命主要解决的都是可见的问题,例如避免产品缺陷、避免加工失效、提升设备效率和可靠性、避免设备故障和安全问题等。这些问题在工业生产中由于可见可测量,往往比较容易避免和解决。不可见的问题通常表现为设备的性能下降、健康衰退、零部件磨损、运行风险升高等。这些因素由于其很难通过测量被定量化,往往是工业生产中不可控的风险,大部分可见的问题都是这些不可见的因素积累到一定程度所造成的。

因此,我、倪军教授和王安正教授在本书中阐述了大数据推动智能制造的三个方向:第一个方向是利用数据来了解和解决可见的问题;第二个方向是利用数据来分析和预测不可见的问题,从仅仅明白解决问题的“knowhow”,进一步理解问题产生的原因,从而避免可见的问题;第三个方向则是从数据中挖掘新的知识,再利用知识去重新定义问题,使得可见或不可见的问题都可以在制造系统中避免。在第一个方向上,许多国家已经有了比较成熟的积累,也形成了各自独特的制造文化,本书中我们会为读者详细解读这些国家的经验和得失。在第二个和第三个方向上,我们也做了许多年的研究和应用,形成了一套较为完整的体系和方法论,在本书中也会结合案例为读者进行详细介绍。借助本书,我们不仅要向读者介绍大数据和智能制造的技术,更重要的是传达一种思维方式,以及对智能制造的理解、解决问题的逻辑和重新定义制造的思考方式。


名称栏目:学会利用大数据去解决问题
分享链接:http://cdweb.net/article/sdcshp.html