网站建设资讯

NEWS

网站建设资讯

Flink1.8中如何进行流处理SocketWordCount

本篇文章给大家分享的是有关Flink1.8中如何进行流处理SocketWordCount,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

成都创新互联是一家专注于成都做网站、成都网站建设与策划设计,莆田网站建设哪家好?成都创新互联做网站,专注于网站建设10余年,网设计领域的专业建站公司;建站业务涵盖:莆田等地区。莆田做网站价格咨询:13518219792

概述:

        这里主要演示flink源码实例中“WordCount”程序的流窗口版本。

    此程序连接到socket服务器并从socket读取字符串。最简单的尝试方法是打开一个文本服务器(在端口9999),使用netcat工具

我这里也贴一下:

/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements.  See the NOTICE file * distributed with this work for additional information * regarding copyright ownership.  The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License.  You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */
package com.hadoop.ljs.flink.streaming;
import org.apache.flink.api.common.functions.FlatMapFunction;import org.apache.flink.api.common.functions.ReduceFunction;import org.apache.flink.api.java.utils.ParameterTool;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.windowing.time.Time;import org.apache.flink.util.Collector;
/** * Implements a streaming windowed version of the "WordCount" program. * *

This program connects to a server socket and reads strings from the socket. * The easiest way to try this out is to open a text server (at port 12345) * using the netcat tool via *

 * nc -l 12345 on Linux or nc -l -p 12345 on Windows * 
* and run this example with the hostname and the port as arguments. */@SuppressWarnings("serial")public class SocketWordCount {
 public static void main(String[] args) throws Exception {
   // the host and the port to connect to    final String hostname;    final int port;    try {      final ParameterTool params = ParameterTool.fromArgs(args);      hostname = params.has("hostname") ? params.get("hostname") : "localhost";      port = params.getInt("port");
     /*hostname = "10.124.165.98";      port = 9999;*/    } catch (Exception e) {      System.err.println("No port specified. Please run 'SocketWordCount " +        "--hostname --port ', where hostname (localhost by default) " +        "and port is the address of the text server");      System.err.println("To start a simple text server, run 'netcat -l ' and " +        "type the input text into the command line");      return;    }
   // get the execution environment    final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
   // get input data by connecting to the socket    DataStream text = env.socketTextStream(hostname, port, "\n");
   // parse the data, group it, window it, and aggregate the counts    DataStream windowCounts = text
       .flatMap(new FlatMapFunction() {          @Override          public void flatMap(String value, Collector out) {            for (String word : value.split("\\s")) {              out.collect(new WordWithCount(word, 1L));            }          }        })
       .keyBy("word")        .timeWindow(Time.seconds(5))
       .reduce(new ReduceFunction() {          @Override          public WordWithCount reduce(WordWithCount a, WordWithCount b) {            return new WordWithCount(a.word, a.count + b.count);          }        });
   // print the results with a single thread, rather than in parallel    windowCounts.print().setParallelism(1);
   env.execute("Socket Window WordCount");  }
 // ------------------------------------------------------------------------
 /**   * Data type for words with count.   */  public static class WordWithCount {
   public String word;    public long count;
   public WordWithCount() {}
   public WordWithCount(String word, long count) {      this.word = word;      this.count = count;    }
   @Override    public String toString() {      return word + " : " + count;    }  }}

    通过maven package打出jar包:flink191-1.0-SNAPSHOT-jar-with-dependencies

直接提交到flink在yarn中已启动的一个session中,从flink界面上传jar:

Flink1.8中如何进行流处理SocketWordCount

    上传后,选中jar前面的复选框,可直接填写相关参数:

Flink1.8中如何进行流处理SocketWordCount

参数格式:--参数名   参数值  --参数名2  参数值2

参数获取是通过上面代码第49行的工具类获取(固定格式):

ParameterTool params = ParameterTool.fromArgs(args);

最后点击“Submit”按钮,提交任务运行即可。

界面也可查看日志和输出:

Flink1.8中如何进行流处理SocketWordCount

以上就是Flink1.8中如何进行流处理SocketWordCount,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。


分享题目:Flink1.8中如何进行流处理SocketWordCount
文章链接:http://cdweb.net/article/pjsdhh.html