本篇文章为大家展示了怎么进行基于linuxthreads2.0.1线程源码分析mutex.c,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
创新互联建站服务项目包括平阳网站建设、平阳网站制作、平阳网页制作以及平阳网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,平阳网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到平阳省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!
mutex即互斥,用于控制多线程间同步、互斥访问资源。
相关的结构体。
/* Mutexes (not abstract because of PTHREAD_MUTEX_INITIALIZER). */
typedef struct
{
// 自旋锁
int m_spinlock; /* Spin lock to guarantee mutual exclusion. */
// 用于递归加锁,即某个线程多次获取了该互斥变量。m_count记录了次数
int m_count; /* 0 if free, > 0 if taken. */
// 记录谁获取了该互斥变量,在递归加锁的时候会使用这个字段
pthread_t m_owner; /* Owner of mutex (for recursive mutexes) */
// 互斥变量的类型,递归或非递归
int m_kind; /* Kind of mutex */
// 等待该互斥变量的线程队列
struct _pthread_queue m_waiting; /* Threads waiting on this mutex. */
} pthread_mutex_t;
// 初始化互斥变量,类型是递归或非递归
#define PTHREAD_MUTEX_INITIALIZER \
{0, 0, 0, PTHREAD_MUTEX_FAST_NP, {0, 0}}
#define PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP \
{0, 0, 0, PTHREAD_MUTEX_RECURSIVE_NP, {0, 0}}
下面是实现的代码。
/* Linuxthreads - a simple clone()-based implementation of Posix */
/* threads for Linux. */
/* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr) */
/* */
/* This program is free software; you can redistribute it and/or */
/* modify it under the terms of the GNU Library General Public License */
/* as published by the Free Software Foundation; either version 2 */
/* of the License, or (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU Library General Public License for more details. */
/* Mutexes */
#include
#include
#include
#include "pthread.h"
#include "internals.h"
#include "spinlock.h"
#include "queue.h"
#include "restart.h"
// 利用属性结构体初始化mutex节点
int __pthread_mutex_init(pthread_mutex_t * mutex,
const pthread_mutexattr_t * mutex_attr)
{
mutex->m_spinlock = 0;
mutex->m_count = 0;
mutex->m_owner = NULL;
mutex->m_kind =
mutex_attr == NULL ? PTHREAD_MUTEX_FAST_NP : mutex_attr->mutexkind;
queue_init(&mutex->m_waiting);
return 0;
}
weak_alias (__pthread_mutex_init, pthread_mutex_init)
// 销毁互斥锁
int __pthread_mutex_destroy(pthread_mutex_t * mutex)
{
int count;
acquire(&mutex->m_spinlock);
count = mutex->m_count;
release(&mutex->m_spinlock);
// 正在被使用
if (count > 0) return EBUSY;
return 0;
}
weak_alias (__pthread_mutex_destroy, pthread_mutex_destroy)
// 非阻塞式获取锁
int __pthread_mutex_trylock(pthread_mutex_t * mutex)
{
pthread_t self;
acquire(&mutex->m_spinlock);
switch(mutex->m_kind) {
case PTHREAD_MUTEX_FAST_NP:
// 还没有被使用,则使用数加一,返回成功
if (mutex->m_count == 0) {
mutex->m_count = 1;
release(&mutex->m_spinlock);
return 0;
}
break;
// 递归获取互斥变量
case PTHREAD_MUTEX_RECURSIVE_NP:
self = thread_self();
// 等于0则说明还没有被获取过,可以直接获取,或者已经被当前线程获取了,则次数加一
if (mutex->m_count == 0 || mutex->m_owner == self) {
mutex->m_count++;
mutex->m_owner = self;
release(&mutex->m_spinlock);
return 0;
}
break;
default:
return EINVAL;
}
release(&mutex->m_spinlock);
return EBUSY;
}
weak_alias (__pthread_mutex_trylock, pthread_mutex_trylock)
// 阻塞式获取互斥变量
int __pthread_mutex_lock(pthread_mutex_t * mutex)
{
pthread_t self;
while(1) {
acquire(&mutex->m_spinlock);
switch(mutex->m_kind) {
case PTHREAD_MUTEX_FAST_NP:
if (mutex->m_count == 0) {
mutex->m_count = 1;
release(&mutex->m_spinlock);
return 0;
}
self = thread_self();
break;
case PTHREAD_MUTEX_RECURSIVE_NP:
self = thread_self();
// 等于0或者本线程已经获得过该互斥锁,则可以重复获得,m_count累加
if (mutex->m_count == 0 || mutex->m_owner == self) {
mutex->m_count++;
// 标记该互斥锁已经被本线程获取
mutex->m_owner = self;
release(&mutex->m_spinlock);
return 0;
}
break;
default:
return EINVAL;
}
/* Suspend ourselves, then try again */
// 获取失败,需要阻塞,把当前线程插入该互斥锁的等待队列
enqueue(&mutex->m_waiting, self);
release(&mutex->m_spinlock);
// 挂起等待唤醒
suspend(self); /* This is not a cancellation point */
}
}
weak_alias (__pthread_mutex_lock, pthread_mutex_lock)
int __pthread_mutex_unlock(pthread_mutex_t * mutex)
{
pthread_t th;
acquire(&mutex->m_spinlock);
switch (mutex->m_kind) {
case PTHREAD_MUTEX_FAST_NP:
mutex->m_count = 0;
break;
case PTHREAD_MUTEX_RECURSIVE_NP:
mutex->m_count--;
if (mutex->m_count > 0) {
release(&mutex->m_spinlock);
return 0;
}
mutex->m_count = 0; /* so that excess unlocks do not break everything */
break;
default:
return EINVAL;
}
// 取出一个被阻塞的线程(如果有的话),唤醒他
th = dequeue(&mutex->m_waiting);
release(&mutex->m_spinlock);
if (th != NULL) restart(th);
return 0;
}
weak_alias (__pthread_mutex_unlock, pthread_mutex_unlock)
int __pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
attr->mutexkind = PTHREAD_MUTEX_FAST_NP;
return 0;
}
weak_alias (__pthread_mutexattr_init, pthread_mutexattr_init)
int __pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
return 0;
}
weak_alias (__pthread_mutexattr_destroy, pthread_mutexattr_destroy)
int __pthread_mutexattr_setkind_np(pthread_mutexattr_t *attr, int kind)
{
if (kind != PTHREAD_MUTEX_FAST_NP && kind != PTHREAD_MUTEX_RECURSIVE_NP)
return EINVAL;
attr->mutexkind = kind;
return 0;
}
weak_alias (__pthread_mutexattr_setkind_np, pthread_mutexattr_setkind_np)
int __pthread_mutexattr_getkind_np(const pthread_mutexattr_t *attr, int *kind)
{
*kind = attr->mutexkind;
return 0;
}
weak_alias (__pthread_mutexattr_getkind_np, pthread_mutexattr_getkind_np)
// 保存init_routine只执行一次
int pthread_once(pthread_once_t * once_control, void (*init_routine)(void))
{
if (testandset(once_control) == 0) init_routine();
return 0;
}
上述内容就是怎么进行基于linuxthreads2.0.1线程源码分析mutex.c,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联行业资讯频道。