小编给大家分享一下hadoop如何通过CombineFileInputFormat实现小文件合并减少map的个数,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
公司主营业务:成都网站建设、做网站、移动网站开发等业务。帮助企业客户真正实现互联网宣传,提高企业的竞争能力。创新互联公司是一支青春激扬、勤奋敬业、活力青春激扬、勤奋敬业、活力澎湃、和谐高效的团队。公司秉承以“开放、自由、严谨、自律”为核心的企业文化,感谢他们对我们的高要求,感谢他们从不同领域给我们带来的挑战,让我们激情的团队有机会用头脑与智慧不断的给客户带来惊喜。创新互联公司推出福建免费做网站回馈大家。
//map读入的键 package hgs.combinefileinputformat.test; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparable; public class CombineFileKey implements WritableComparable{ private String fileName; private long offset; public String getFileName() { return fileName; } public void setFileName(String fileName) { this.fileName = fileName; } public long getOffset() { return offset; } public void setOffset(long offset) { this.offset = offset; } @Override public void readFields(DataInput input) throws IOException { this.fileName = Text.readString(input); this.offset = input.readLong(); } @Override public void write(DataOutput output) throws IOException { Text.writeString(output, fileName); output.writeLong(offset); } @Override public int compareTo(CombineFileKey obj) { int f = this.fileName.compareTo(obj.fileName); if(f==0) return (int)Math.signum((double)(this.offset-obj.offset)); return f; } @Override public int hashCode() { //摘自于 http://www.idryman.org/blog/2013/09/22/process-small-files-on-hadoop-using-combinefileinputformat-1/ final int prime = 31; int result = 1; result = prime * result + ((fileName == null) ? 0 : fileName.hashCode()); result = prime * result + (int) (offset ^ (offset >>> 32)); return result; } @Override public boolean equals(Object o) { if(o instanceof CombineFileKey) return this.compareTo((CombineFileKey)o)==0; return false; } }
package hgs.combinefileinputformat.test; import java.io.IOException; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit; import org.apache.hadoop.util.LineReader; public class CombineFileReader extends RecordReader{ private long startOffset; //offset of the chunk; private long end; //end of the chunk; private long position; // current pos private FileSystem fs; private Path path; private CombineFileKey key; private Text value; private FSDataInputStream input; private LineReader reader; public CombineFileReader(CombineFileSplit split,TaskAttemptContext context , Integer index) throws IOException { //初始化path fs startOffset end this.path = split.getPath(index); this.fs = this.path.getFileSystem(context.getConfiguration()); this.startOffset = split.getOffset(index); this.end = split.getLength()+this.startOffset; //判断现在开始的位置是否在一行的内部 boolean skipFirstLine = false; //open the file this.input = fs.open(this.path); //不等于0说明读取位置在一行的内部 if(this.startOffset !=0 ){ skipFirstLine = true; --(this.startOffset); //定位到开始读取的位置 this.input.seek(this.startOffset); } //初始化reader this.reader = new LineReader(input); if(skipFirstLine){ // skip first line and re-establish "startOffset". //这里着这样做的原因是 一行可能包含了这个文件的所有的数据,猜测如果遇到一行的话,还是会读取一行 //将其实位置调整到一行的开始,这样的话会舍弃部分数据 this.startOffset += this.reader.readLine(new Text(), 0, (int)Math.min ((long)Integer.MAX_VALUE, this.end - this.startOffset)); } this.position = this.startOffset; } @Override public void close() throws IOException {} @Override public void initialize(InputSplit splite, TaskAttemptContext context) throws IOException, InterruptedException {} //返回当前的key @Override public CombineFileKey getCurrentKey() throws IOException, InterruptedException { return key; } //返回当前的value @Override public Text getCurrentValue() throws IOException, InterruptedException { return value; } //执行的进度 @Override public float getProgress() throws IOException, InterruptedException { //返回的类型为float if(this.startOffset==this.end){ return 0.0f; }else{ return Math.min(1.0f, (this.position - this.startOffset)/(float)(this.end - this.startOffset)); } } //该方法判断是否有下一个key value @Override public boolean nextKeyValue() throws IOException, InterruptedException { //对key和value初始化 if(this.key == null){ this.key = new CombineFileKey(); this.key.setFileName(this.path.getName()); } this.key.setOffset(this.position); if(this.value == null){ this.value = new Text(); } //读取一行数据,如果读取的newSieze=0说明split的数据已经处理完成 int newSize = 0; if(this.position package hgs.combinefileinputformat.test; import java.io.IOException; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.JobContext; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat; import org.apache.hadoop.mapreduce.lib.input.CombineFileRecordReader; import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit; public class CustCombineInputFormat extends CombineFileInputFormat{ public CustCombineInputFormat(){ super(); //最大切片大小 this.setMaxSplitSize(67108864);//64 MB } @Override public RecordReader createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException { return new CombineFileRecordReader ((CombineFileSplit)split,context,CombineFileReader.class); } @Override protected boolean isSplitable(JobContext context, Path file) { return false; } } //驱动类 package hgs.test; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import hgs.combinefileinputformat.test.CustCombineInputFormat; public class LetterCountDriver { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); //conf.set("mapreduce.map.log.level", "INFO"); ///conf.set("mapreduce.reduce.log.level", "INFO"); Job job = Job.getInstance(conf, "LetterCount"); job.setJarByClass(hgs.test.LetterCountDriver.class); // TODO: specify a mapper job.setMapperClass(LetterCountMapper.class); // TODO: specify a reducer job.setReducerClass(LetterReducer.class); // TODO: specify output types job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); if(args[0].equals("1")) job.setInputFormatClass(CustCombineInputFormat.class); else{} // TODO: specify input and output DIRECTORIES (not files) FileInputFormat.setInputPaths(job, new Path("/words")); FileOutputFormat.setOutputPath(job, new Path("/result")); if (!job.waitForCompletion(true)) return; } } hdfs文件:
运行结果:不使用自定义的:CustCombineInputFormat
运行结果:在使用自定义的:CustCombineInputFormat
以上是“hadoop如何通过CombineFileInputFormat实现小文件合并减少map的个数”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
名称栏目:hadoop如何通过CombineFileInputFormat实现小文件合并减少map的个数
URL链接:http://cdweb.net/article/pdhdis.html