网站建设资讯

NEWS

网站建设资讯

go语言优化方法 go语言 方法

3.6 Go语言函数的延迟调用(Deferred Code)

在以下这段代码中,我们操作一个文件,无论成功与否都需要关闭文件句柄。这里在三处不同的位置都调用了file.Close()方法,代码显得非常冗余。

在松溪等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供成都网站设计、成都网站建设 网站设计制作定制网站制作,公司网站建设,企业网站建设,高端网站设计,成都全网营销推广,外贸网站建设,松溪网站建设费用合理。

我们利用延迟调用来优化代码。定义后的defer代码,会在return之前返回,让代码显得更加紧凑,且可读性变强,对上面的代码改造如下:

我们通过这个示例来看一下延迟调用与正常代码之间的执行顺序

先简单分析一下代码逻辑:

从输出中,我们可以观察到如下现象:

从这个实例中,我们很明显观察到,defer语句是在return之前执行

如果一个函数内定义了多个defer,则调用顺序为LIFO(后进先出)方式执行。

仍然是相同的例子,但是在TestDefer中我们定义了三个defer输出,根据LIFO原则,输出的顺序是3rd-2nd-1st,根据最后的结果,也是逆向向上执行defer输出。

就在整理这篇笔记的时候,发现了自己的认知误区,主要是本节实例三中发现的,先来看一下英文的描述:

对于上面的这段话的理解:

下面是代码执行输出,我们来一起分析一下:

虽然在a()函数内,显示的返回了10,但是main函数中得到的结果是defer函数自增后的结果,我们来分析一下代码:

在这篇文章的上一版,我曾经尝试用指针取解释defer修改返回值的类型,但是感觉不够透彻,也让阅读者非常困惑,索性参考了一下go官方blog中的一篇文章,在此基础上进行了扩展。如需要阅读原文,可以参考下面的文章。

Go语言中恰到好处的内存对齐

在开始之前,希望你计算一下 Part1 共占用的大小是多少呢?

输出结果:

这么一算, Part1 这一个结构体的占用内存大小为 1+4+1+8+1 = 15 个字节。相信有的小伙伴是这么算的,看上去也没什么毛病

真实情况是怎么样的呢?我们实际调用看看,如下:

输出结果:

最终输出为占用 32 个字节。这与前面所预期的结果完全不一样。这充分地说明了先前的计算方式是错误的。为什么呢?

在这里要提到 “内存对齐” 这一概念,才能够用正确的姿势去计算,接下来我们详细的讲讲它是什么

有的小伙伴可能会认为内存读取,就是一个简单的字节数组摆放

上图表示一个坑一个萝卜的内存读取方式。但实际上 CPU 并不会以一个一个字节去读取和写入内存。相反 CPU 读取内存是 一块一块读取 的,块的大小可以为 2、4、6、8、16 字节等大小。块大小我们称其为 内存访问粒度 。如下图:

在样例中,假设访问粒度为 4。 CPU 是以每 4 个字节大小的访问粒度去读取和写入内存的。这才是正确的姿势

另外作为一个工程师,你也很有必要学习这块知识点哦 :)

在上图中,假设从 Index 1 开始读取,将会出现很崩溃的问题。因为它的内存访问边界是不对齐的。因此 CPU 会做一些额外的处理工作。如下:

从上述流程可得出,不做 “内存对齐” 是一件有点 "麻烦" 的事。因为它会增加许多耗费时间的动作

而假设做了内存对齐,从 Index 0 开始读取 4 个字节,只需要读取一次,也不需要额外的运算。这显然高效很多,是标准的 空间换时间 做法

在不同平台上的编译器都有自己默认的 “对齐系数”,可通过预编译命令 #pragma pack(n) 进行变更,n 就是代指 “对齐系数”。一般来讲,我们常用的平台的系数如下:

另外要注意,不同硬件平台占用的大小和对齐值都可能是不一样的。因此本文的值不是唯一的,调试的时候需按本机的实际情况考虑

输出结果:

在 Go 中可以调用 unsafe.Alignof 来返回相应类型的对齐系数。通过观察输出结果,可得知基本都是 2^n ,最大也不会超过 8。这是因为我手提(64 位)编译器默认对齐系数是 8,因此最大值不会超过这个数

在上小节中,提到了结构体中的成员变量要做字节对齐。那么想当然身为最终结果的结构体,也是需要做字节对齐的

接下来我们一起分析一下,“它” 到底经历了些什么,影响了 “预期” 结果

在每个成员变量进行对齐后,根据规则 2,整个结构体本身也要进行字节对齐,因为可发现它可能并不是 2^n ,不是偶数倍。显然不符合对齐的规则

根据规则 2,可得出对齐值为 8。现在的偏移量为 25,不是 8 的整倍数。因此确定偏移量为 32。对结构体进行对齐

Part1 内存布局:axxx|bbbb|cxxx|xxxx|dddd|dddd|exxx|xxxx

通过本节的分析,可得知先前的 “推算” 为什么错误?

是因为实际内存管理并非 “一个萝卜一个坑” 的思想。而是一块一块。通过空间换时间(效率)的思想来完成这块读取、写入。另外也需要兼顾不同平台的内存操作情况

在上一小节,可得知根据成员变量的类型不同,其结构体的内存会产生对齐等动作。那假设字段顺序不同,会不会有什么变化呢?我们一起来试试吧 :-)

输出结果:

通过结果可以惊喜的发现,只是 “简单” 对成员变量的字段顺序进行改变,就改变了结构体占用大小

接下来我们一起剖析一下 Part2 ,看看它的内部到底和上一位之间有什么区别,才导致了这样的结果?

符合规则 2,不需要额外对齐

Part2 内存布局:ecax|bbbb|dddd|dddd

通过对比 Part1 和 Part2 的内存布局,你会发现两者有很大的不同。如下:

仔细一看, Part1 存在许多 Padding。显然它占据了不少空间,那么 Padding 是怎么出现的呢?

通过本文的介绍,可得知是由于不同类型导致需要进行字节对齐,以此保证内存的访问边界

那么也不难理解,为什么 调整结构体内成员变量的字段顺序 就能达到缩小结构体占用大小的疑问了,是因为巧妙地减少了 Padding 的存在。让它们更 “紧凑” 了。这一点对于加深 Go 的内存布局印象和大对象的优化非常有帮

Go语言设计与实现(上)

基本设计思路:

类型转换、类型断言、动态派发。iface,eface。

反射对象具有的方法:

编译优化:

内部实现:

实现 Context 接口有以下几个类型(空实现就忽略了):

互斥锁的控制逻辑:

设计思路:

(以上为写被读阻塞,下面是读被写阻塞)

总结,读写锁的设计还是非常巧妙的:

设计思路:

WaitGroup 有三个暴露的函数:

部件:

设计思路:

结构:

Once 只暴露了一个方法:

实现:

三个关键点:

细节:

让多协程任务的开始执行时间可控(按顺序或归一)。(Context 是控制结束时间)

设计思路: 通过一个锁和内置的 notifyList 队列实现,Wait() 会生成票据,并将等待协程信息加入链表中,等待控制协程中发送信号通知一个(Signal())或所有(Boardcast())等待者(内部实现是通过票据通知的)来控制协程解除阻塞。

暴露四个函数:

实现细节:

部件:

包: golang.org/x/sync/errgroup

作用:开启 func() error 函数签名的协程,在同 Group 下协程并发执行过程并收集首次 err 错误。通过 Context 的传入,还可以控制在首次 err 出现时就终止组内各协程。

设计思路:

结构:

暴露的方法:

实现细节:

注意问题:

包: "golang.org/x/sync/semaphore"

作用:排队借资源(如钱,有借有还)的一种场景。此包相当于对底层信号量的一种暴露。

设计思路:有一定数量的资源 Weight,每一个 waiter 携带一个 channel 和要借的数量 n。通过队列排队执行借贷。

结构:

暴露方法:

细节:

部件:

细节:

包: "golang.org/x/sync/singleflight"

作用:防击穿。瞬时的相同请求只调用一次,response 被所有相同请求共享。

设计思路:按请求的 key 分组(一个 *call 是一个组,用 map 映射存储组),每个组只进行一次访问,组内每个协程会获得对应结果的一个拷贝。

结构:

逻辑:

细节:

部件:

如有错误,请批评指正。

Go语言有什么优势?

GO语言的优势:可直接编译成机器码,不依赖其他库,glibc的版本有一定要求,部署就是扔一个文件上去就完成了。静态类型语言,但是有动态语言的感觉,静态类型的语言就是可以在编译的时候检查出来隐藏的大多数问题,动态语言的感觉就是有很多的包可以使用,写起来的效率很高。语言层面支持并发,这个就是Go最大的特色,天生的支持并发,我曾经说过一句话,天生的基因和整容是有区别的,大家一样美丽,但是你喜欢整容的还是天生基因的美丽呢?Go就是基因里面支持的并发,可以充分的利用多核,很容易的使用并发。内置runtime,支持垃圾回收,这属于动态语言的特性之一吧,虽然目前来说GC不算完美,但是足以应付我们所能遇到的大多数情况,特别是Go1.1之后的GC。简单易学,Go语言的作者都有C的基因,那么Go自然而然就有了C的基因,那么Go关键字是25个,但是表达能力很强大,几乎支持大多数你在其他语言见过的特性:继承、重载、对象等。丰富的标准库,Go目前已经内置了大量的库,特别是网络库非常强大,我最爱的也是这部分。内置强大的工具,Go语言里面内置了很多工具链,最好的应该是gofmt工具,自动化格式化代码,能够让团队review变得如此的简单,代码格式一模一样,想不一样都很困难。跨平台编译,如果你写的Go代码不包含cgo,那么就可以做到window系统编译linux的应用,如何做到的呢?Go引用了plan9的代码,这就是不依赖系统的信息。Go语言这么多的优势,你还不想学吗?我记得当时我看的是黑马程序员的视频,我对他们视频的印象就是通俗易懂,就是好!


本文题目:go语言优化方法 go语言 方法
当前地址:http://cdweb.net/article/hpjigo.html