递归的思想主要是能够重复某些动作,比如简单的阶乘,次方,回溯中的八皇后,数独,还有汉诺塔,分形。
让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:主机域名、虚拟主机、营销软件、网站建设、德州网站维护、网站推广。
由于堆栈的机制,一般的递归可以保留某些变量在历史状态中,比如你提到的return
x
*
power...,
但是某些或许庞大的问题或者是深度过大的问题就需要尽量避免递归,因为可能会栈溢出。还有一个问题是~python不支持尾递归优化!!!!所以~还是尽量避免递归的出现。
def
power(x,
n)
if
n
0:
return
1
return
x
*
power(x,
n
-
1)
power(3,
3)
3
*
power(3,
2)
3
*
(3
*
power(3,
1))
3
*
(3
*
(3
*
power(3,
0)))
3
*
(3
*
(3
*
1))
这里n
=
0,
return
1
3
*
(3
*
3)
3
*
9
27
当函数形参n=0的时候,开始回退~直到第一次调用power结束。
def Sum(m): #函数返回两个值:递归次数,所求的值 if m==1:return 1,m return 1+Sum(m-1)[0],m+Sum(m-1)[1]cishu=Sum(10)[0] print cishu def Sum(m,n=1): ... if m==1:return n,m ... return n,m+Sum(m-1,n+1)[1] print Sum(10)[0] 10 print Sum(5)[0] 5
递归式方法可以被用于解决很多的计算机科学问题,因此它是计算机科学中十分重要的一个概念。
绝大多数编程语言支持函数的自调用,在这些语言中函数可以通过调用自身来进行递归。计算理论可以证明递归的作用可以完全取代循环,因此在很多函数编程语言(如Scheme)中习惯用递归来实现循环。
计算机科学家尼克劳斯·维尔特如此描述递归:
递归的强大之处在于它允许用户用有限的语句描述无限的对象。因此,在计算机科学中,递归可以被用来描述无限步的运算,尽管描述运算的程序是有限的。
python 2 递归函数和其它语言,基本没有差别,只是不支持尾递归。无限递归最大值为固定的,但可以修改。
作者:黄哥
所谓基例就是不需要递归就能求解的,一般来说是问题的最小规模下的解。
例如:斐波那契数列递归,f(n)
=
f(n-1)
+
f(n-2),基例是1和2,f(1)和f(2)结果都是1
再比如:汉诺塔递归,基例就是1个盘子的情况,只需移动一次,无需递归
递归必须有基例,否则就是无法退出的递归,不能求解。