递归的思想主要是能够重复某些动作,比如简单的阶乘,次方,回溯中的八皇后,数独,还有汉诺塔,分形。
创新互联是一家专业的成都网站建设公司,我们专注网站制作、成都网站设计、网络营销、企业网站建设,买链接,广告投放平台为企业客户提供一站式建站解决方案,能带给客户新的互联网理念。从网站结构的规划UI设计到用户体验提高,创新互联力求做到尽善尽美。
由于堆栈的机制,一般的递归可以保留某些变量在历史状态中,比如你提到的return
x
*
power...,
但是某些或许庞大的问题或者是深度过大的问题就需要尽量避免递归,因为可能会栈溢出。还有一个问题是~python不支持尾递归优化!!!!所以~还是尽量避免递归的出现。
def
power(x,
n)
if
n
0:
return
1
return
x
*
power(x,
n
-
1)
power(3,
3)
3
*
power(3,
2)
3
*
(3
*
power(3,
1))
3
*
(3
*
(3
*
power(3,
0)))
3
*
(3
*
(3
*
1))
这里n
=
0,
return
1
3
*
(3
*
3)
3
*
9
27
当函数形参n=0的时候,开始回退~直到第一次调用power结束。
可以看出来的是,该题可以用斐波那契数列解决。
楼梯一共有n层,每次只能走1层或者2层,而要走到最终的n层。不是从n-1或者就是n-2来的。
F(1) = 1
F(2) = 2
F(n) = F(n-1) + F(n-2) (n=3)
这是递归写法,但是会导致栈溢出。在计算机中,函数的调用是通过栈进行实现的,如果递归调用的次数过多,就会导致栈溢出。
针对这种情况就要使用方法二,改成非递归函数。
将递归进行改写,实现循环就不会导致栈溢出
所谓基例就是不需要递归就能求解的,一般来说是问题的最小规模下的解。
例如:斐波那契数列递归,f(n)
=
f(n-1)
+
f(n-2),基例是1和2,f(1)和f(2)结果都是1
再比如:汉诺塔递归,基例就是1个盘子的情况,只需移动一次,无需递归
递归必须有基例,否则就是无法退出的递归,不能求解。
程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法。
它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。
递归的能力在于用有限的语句来定义对象的无限集合。一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。
Python
是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。
def Sum(m): #函数返回两个值:递归次数,所求的值 if m==1:return 1,m return 1+Sum(m-1)[0],m+Sum(m-1)[1]cishu=Sum(10)[0] print cishu def Sum(m,n=1): ... if m==1:return n,m ... return n,m+Sum(m-1,n+1)[1] print Sum(10)[0] 10 print Sum(5)[0] 5