网站建设资讯

NEWS

网站建设资讯

随机取数函数python 随机取数函数rand

用python生成随机数的几种方法

1 从给定参数的正态分布中生成随机数

成都创新互联公司成立于2013年,是专业互联网技术服务公司,拥有项目网站制作、成都网站制作网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元维西做网站,已为上家服务,为维西各地企业和个人服务,联系电话:18982081108

当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了。这里调用了Numpy模块中的random.normal函数,由于逻辑非参简单,所有直接贴上代码如下:

import numpy as np# 定义从正态分布中获取随机数的函数def get_normal_random_number(loc, scale): """ :param loc: 正态分布的均值 :param scale: 正态分布的标准差 :return:从正态分布中产生的随机数 """ # 正态分布中的随机数生成 number = np.random.normal(loc=loc, scale=scale) # 返回值 return number# 主模块if __name__ == "__main__": # 函数调用 n = get_normal_random_number(loc=2, scale=2) # 打印结果 print(n) # 结果:3.275192443463058

2 从给定参数的均匀分布中获取随机数的函数

考虑从均匀分布中获取随机数的时候,要事先知道均匀分布的下界和上界,然后调用Numpy模块的random.uniform函数生成随机数。

import numpy as np# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 主模块if __name__ == "__main__": # 函数调用 n = get_uniform_random_number(low=2, high=4) # 打印结果 print(n) # 结果:2.4462417140153114

3 按照指定概率生成随机数

有时候我们需要按照指定的概率生成随机数,比如已知盒子中每种颜色的球的比例,猜测下一次取出的球的颜色。在这里介绍的问题和上面的例子相似,要求给定一个概率列表,从列表对应的数字列表或区间列表中生成随机数,分两部分讨论。

3.1 按照指定概率从数字列表中随机抽取数字

假设给定一个数字列表和一个与之对应的概率列表,两个列表对应位置的元素组成的元组即表示该数字在数字列表中以多大的概率出现,那么如何根据这些已知条件从数字列表中按概率抽取随机数呢?在这里我们考虑用均匀分布来模拟概率,代码如下:

import numpy as npimport random# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数def get_number_by_pro(number_list, pro_list): """ :param number_list:数字列表 :param pro_list:数字对应的概率列表 :return:按概率从数字列表中抽取的数字 """ # 用均匀分布中的样本值来模拟概率 x = random.uniform(0, 1) # 累积概率 cum_pro = 0.0 # 将可迭代对象打包成元组列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x cum_pro: # 返回值 return number# 主模块if __name__ == "__main__": # 数字列表 num_list = [1, 2, 3, 4, 5] # 对应的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函数调用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印结果 print(n) # 结果:1

3.2 按照指定概率从区间列表中的某个区间内生成随机数

给定一个区间列表和一个与之对应的概率列表,两个列表相应位置的元素组成的元组即表示某数字出现在某区间内的概率是多少,已知这些,我们如何生成随机数呢?这里我们通过两次使用均匀分布达到目的,代码如下:

import numpy as npimport random# 定义从均匀分布中获取随机数的函数def get_uniform_random_number(low, high): """ :param low: 均匀分布的下界 :param high: 均匀分布的上界 :return: 从均匀分布中产生的随机数 """ # 均匀分布的随机数生成 number = np.random.uniform(low, high) # 返回值 return number# 定义从一个数字列表中以一定的概率取出对应区间中数字的函数def get_number_by_pro(number_list, pro_list): """ :param number_list:数字列表 :param pro_list:数字对应的概率列表 :return:按概率从数字列表中抽取的数字 """ # 用均匀分布中的样本值来模拟概率 x = random.uniform(0, 1) # 累积概率 cum_pro = 0.0 # 将可迭代对象打包成元组列表 for number, number_pro in zip(number_list, pro_list): cum_pro += number_pro if x cum_pro: # 从区间[number. number - 1]上随机抽取一个值 num = get_uniform_random_number(number, number - 1) # 返回值 return num# 主模块if __name__ == "__main__": # 数字列表 num_list = [1, 2, 3, 4, 5] # 对应的概率列表 pr_list = [0.1, 0.3, 0.1, 0.4, 0.1] # 函数调用 n = get_number_by_pro(number_list=num_list, pro_list=pr_list) # 打印结果 print(n) # 结果:3.49683787011193

python如何随机选取n个不同的数字

python随机选取n个不同的数字的方法:

1、使用“import random”导入random包

2、通过for语句循环执行n次“random.randint()”语句获取n个随机数并将随机数输入到列表中

n=10示例如下:

3、用set函数去重就可以了

完整代码:

更多Python知识,请关注:Python自学网!!

python用什么函数产生随机数

在python中用于生成随机数的模块是random,在使用前需要import

random.random:

random.random():生成一个0-1之间的随机浮点数.例:

[python] view plain copy

import random

print random.random()

# 0.87594424128

random.uniform

random.uniform(a, b):生成[a,b]之间的浮点数.例:

[python] view plain copy

import random

print random.uniform(0, 10)

# 5.27462570463

random.ranint

random.randint(a, b):生成[a,b]之间的整数.例:

[python] view plain copy

import random

print random.randint(0, 10)

# 8

random.randrange

random.randrange(a, b, step):在指定的集合[a,b)中,以step为基数随机取一个数.如random.randrange(0, 20, 2),相当于从[0,2,4,6,...,18]中随机取一个.例:

[python] view plain copy

import random

print random.randrange(0, 20, 2)

# 14


网站标题:随机取数函数python 随机取数函数rand
标题来源:http://cdweb.net/article/hepcjd.html