网站建设资讯

NEWS

网站建设资讯

python函数运行机制,python运行方法

Python函数的参数类型

Python函数的参数类型主要包括必选参数、可选参数、可变参数、位置参数和关键字参数,本文介绍一下他们的定义以及可变数据类型参数传递需要注意的地方。

我们提供的服务有:成都网站设计、做网站、微信公众号开发、网站优化、网站认证、子洲ssl等。为近1000家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的子洲网站制作公司

必选参数(Required arguments)是必须输入的参数,比如下面的代码,必须输入2个参数,否则就会报错:

其实上面例子中的参数 num1和num2也属于关键字参数,比如可以通过如下方式调用:

执行结果:

可选参数(Optional arguments)可以不用传入函数,有一个默认值,如果没有传入会使用默认值,不会报错。

位置参数(positional arguments)根据其在函数定义中的位置调用,下面是pow()函数的帮助信息:

x,y,z三个参数的的顺序是固定的,并且不能使用关键字:

输出:

在上面的pow()函数帮助信息中可以看到位置参数后面加了一个反斜杠 / ,这是python内置函数的语法定义,Python开发人员不能在python3.8版本之前的代码中使用此语法。但python3.0到3.7版本可以使用如下方式定义位置参数:

星号前面的参数为位置参数或者关键字参数,星号后面是强制关键字参数,具体介绍见强制关键字参数。

python3.8版本引入了强制位置参数(Positional-Only Parameters),也就是我们可以使用反斜杠 / 语法来定义位置参数了,可以写成如下形式:

来看下面的例子:

python3.8运行:

不能使用关键字参数形式赋值了。

可变参数 (varargs argument) 就是传入的参数个数是可变的,可以是0-n个,使用星号( * )将输入参数自动组装为一个元组(tuple):

执行结果:

关键字参数(keyword argument)允许将任意个含参数名的参数导入到python函数中,使用双星号( ** ),在函数内部自动组装为一个字典。

执行结果:

上面介绍的参数可以混合使用:

结果:

注意:由于传入的参数个数不定,所以当与普通参数一同使用时,必须把带星号的参数放在最后。

强制关键字参数(Keyword-Only Arguments)是python3引入的特性,可参考:。 使用一个星号隔开:

在位置参数一节介绍过星号前面的参数可以是位置参数和关键字参数。星号后面的参数都是强制关键字参数,必须以指定参数名的方式传参,如果强制关键字参数没有设置默认参数,调用函数时必须传参。

执行结果:

也可以在可变参数后面命名关键字参数,这样就不需要星号分隔符了:

执行结果:

在Python对象及内存管理机制中介绍了python中的参数传递属于对象的 引用传递 (pass by object reference),在编写函数的时候需要特别注意。

先来看个例子:

执行结果:

l1 和 l2指向相同的地址,由于列表可变,l1改变时,l2也跟着变了。

接着看下面的例子:

结果:

l1没有变化!为什么不是[1, 2, 3, 4]呢?

l = l + [4]表示创建一个“末尾加入元素 4“的新列表,并让 l 指向这个新的对象,l1没有进行任何操作,因此 l1 的值不变。如果要改变l1的值,需要加一个返回值:

结果:

下面的代码执行结果又是什么呢?

执行结果:

和第一个例子一样,l1 和 l2指向相同的地址,所以会一起改变。这个问题怎么解决呢?

可以使用下面的方式:

也可以使用浅拷贝或者深度拷贝,具体使用方法可参考Python对象及内存管理机制。这个问题在Python编程时需要特别注意。

本文主要介绍了python函数的几种参数类型:必选参数、可选参数、可变参数、位置参数、强制位置参数、关键字参数、强制关键字参数,注意他们不是完全独立的,比如必选参数、可选参数也可以是关键字参数,位置参数可以是必选参数或者可选参数。

另外,python中的参数传递属于对象的 引用传递 ,在对可变数据类型进行参数传递时需要特别注意,如有必要,使用python的拷贝方法。

参考文档:

--THE END--

Python 里为什么函数可以返回一个函数内部定义的函数

“在Python中,函数本身也是对象”

这一本质。那不妨慢慢来,从最基本的概念开始,讨论一下这个问题:

1. Python中一切皆对象

这恐怕是学习Python最有用的一句话。想必你已经知道Python中的list, tuple, dict等内置数据结构,当你执行:

alist = [1, 2, 3]

时,你就创建了一个列表对象,并且用alist这个变量引用它:

当然你也可以自己定义一个类:

class House(object):

def __init__(self, area, city):

self.area = area

self.city = city

def sell(self, price):

[...] #other code

return price

然后创建一个类的对象:

house = House(200, 'Shanghai')

OK,你立马就在上海有了一套200平米的房子,它有一些属性(area, city),和一些方法(__init__, self):

2. 函数是第一类对象

和list, tuple, dict以及用House创建的对象一样,当你定义一个函数时,函数也是对象:

def func(a, b):

return a+b

在全局域,函数对象被函数名引用着,它接收两个参数a和b,计算这两个参数的和作为返回值。

所谓第一类对象,意思是可以用标识符给对象命名,并且对象可以被当作数据处理,例如赋值、作为参数传递给函数,或者作为返回值return 等

因此,你完全可以用其他变量名引用这个函数对象:

add = func

这样,你就可以像调用func(1, 2)一样,通过新的引用调用函数了:

print func(1, 2)

print add(1, 2) #the same as func(1, 2)

或者将函数对象作为参数,传递给另一个函数:

def caller_func(f):

return f(1, 2)

if __name__ == "__main__":

print caller_func(func)

可以看到,

函数对象func作为参数传递给caller_func函数,传参过程类似于一个赋值操作f=func;

于是func函数对象,被caller_func函数作用域中的局部变量f引用,f实际指向了函数func;cc

当执行return f(1, 2)的时候,相当于执行了return func(1, 2);

因此输出结果为3。

3. 函数对象 vs 函数调用

无论是把函数赋值给新的标识符,还是作为参数传递给新的函数,针对的都是函数对象本身,而不是函数的调用。

用一个更加简单,但从外观上看,更容易产生混淆的例子来说明这个问题。例如定义了下面这个函数:

def func():

return "hello,world"

然后分别执行两次赋值:

ref1 = func #将函数对象赋值给ref1

ref2 = func() #调用函数,将函数的返回值("hello,world"字符串)赋值给ref2

很多初学者会混淆这两种赋值,通过Python内建的type函数,可以查看一下这两次赋值的结果:

In [4]: type(ref1)

Out[4]: function

In [5]: type(ref2)

Out[5]: str

可以看到,ref1引用了函数对象本身,而ref2则引用了函数的返回值。通过内建的callable函数,可以进一步验证ref1是可调用的,而ref2是不可调用的:

In [9]: callable(ref1)

Out[9]: True

In [10]: callable(ref2)

Out[10]: False

传参的效果与之类似。

4. 闭包LEGB法则

所谓闭包,就是将组成函数的语句和这些语句的执行环境打包在一起时,得到的对象

听上去的确有些复杂,还是用一个栗子来帮助理解一下。假设我们在foo.py模块中做了如下定义:

#foo.py

filename = "foo.py"

def call_func(f):

return f() #如前面介绍的,f引用一个函数对象,然后调用它

在另一个func.py模块中,写下了这样的代码:

#func.py

import foo #导入foo.py

filename = "func.py"

def show_filename():

return "filename: %s" % filename

if __name__ == "__main__":

print foo.call_func(show_filename) #注意:实际发生调用的位置,是在foo.call_func函数中

当我们用python func.py命令执行func.py时输出结果为:

chiyu@chiyu-PC:~$ python func.py

filename:func.py

很显然show_filename()函数使用的filename变量的值,是在与它相同环境(func.py模块)中定义的那个。尽管foo.py模块中也定义了同名的filename变量,而且实际调用show_filename的位置也是在foo.py的call_func内部。

而对于嵌套函数,这一机制则会表现的更加明显:闭包将会捕捉内层函数执行所需的整个环境:

#enclosed.py

import foo

def wrapper():

filename = "enclosed.py"

def show_filename():

return "filename: %s" % filename

print foo.call_func(show_filename) #输出:filename: enclosed.py

实际上,每一个函数对象,都有一个指向了该函数定义时所在全局名称空间的__globals__属性:

#show_filename inside wrapper

#show_filename.__globals__

{

'__builtins__': module '__builtin__' (built-in), #内建作用域环境

'__file__': 'enclosed.py',

'wrapper': function wrapper at 0x7f84768b6578, #直接外围环境

'__package__': None,

'__name__': '__main__',

'foo': module 'foo' from '/home/chiyu/foo.pyc', #全局环境

'__doc__': None

}

当代码执行到show_filename中的return "filename: %s" % filename语句时,解析器按照下面的顺序查找filename变量:

Local - 本地函数(show_filename)内部,通过任何方式赋值的,而且没有被global关键字声明为全局变量的filename变量;

Enclosing - 直接外围空间(上层函数wrapper)的本地作用域,查找filename变量(如果有多层嵌套,则由内而外逐层查找,直至最外层的函数);

Global - 全局空间(模块enclosed.py),在模块顶层赋值的filename变量;

Builtin - 内置模块(__builtin__)中预定义的变量名中查找filename变量;

在任何一层先找到了符合要求的filename变量,则不再向更外层查找。如果直到Builtin层仍然没有找到符合要求的变量,则抛出NameError异常。这就是变量名解析的:LEGB法则。

总结:

闭包最重要的使用价值在于:封存函数执行的上下文环境;

闭包在其捕捉的执行环境(def语句块所在上下文)中,也遵循LEGB规则逐层查找,直至找到符合要求的变量,或者抛出异常。

5. 装饰器语法糖(syntax sugar)

那么闭包和装饰器又有什么关系呢?

上文提到闭包的重要特性:封存上下文,这一特性可以巧妙的被用于现有函数的包装,从而为现有函数更加功能。而这就是装饰器。

还是举个例子,代码如下:

#alist = [1, 2, 3, ..., 100] -- 1+2+3+...+100 = 5050

def lazy_sum():

return reduce(lambda x, y: x+y, alist)

我们定义了一个函数lazy_sum,作用是对alist中的所有元素求和后返回。alist假设为1到100的整数列表:

alist = range(1, 101)

但是出于某种原因,我并不想马上返回计算结果,而是在之后的某个地方,通过显示的调用输出结果。于是我用一个wrapper函数对其进行包装:

def wrapper():

alist = range(1, 101)

def lazy_sum():

return reduce(lambda x, y: x+y, alist)

return lazy_sum

lazy_sum = wrapper() #wrapper() 返回的是lazy_sum函数对象

if __name__ == "__main__":

lazy_sum() #5050

这是一个典型的Lazy Evaluation的例子。我们知道,一般情况下,局部变量在函数返回时,就会被垃圾回收器回收,而不能再被使用。但是这里的alist却没有,它随着lazy_sum函数对象的返回被一并返回了(这个说法不准确,实际是包含在了lazy_sum的执行环境中,通过__globals__),从而延长了生命周期。

当在if语句块中调用lazy_sum()的时候,解析器会从上下文中(这里是Enclosing层的wrapper函数的局部作用域中)找到alist列表,计算结果,返回5050。

当你需要动态的给已定义的函数增加功能时,比如:参数检查,类似的原理就变得很有用:

def add(a, b):

return a+b

这是很简单的一个函数:计算a+b的和返回,但我们知道Python是 动态类型+强类型 的语言,你并不能保证用户传入的参数a和b一定是两个整型,他有可能传入了一个整型和一个字符串类型的值:

In [2]: add(1, 2)

Out[2]: 3

In [3]: add(1.2, 3.45)

Out[3]: 4.65

In [4]: add(5, 'hello')

---------------------------------------------------------------------------

TypeError Traceback (most recent call last)

/home/chiyu/ipython-input-4-f2f9e8aa5eae in module()

---- 1 add(5, 'hello')

/home/chiyu/ipython-input-1-02b3d3d6caec in add(a, b)

1 def add(a, b):

---- 2 return a+b

TypeError: unsupported operand type(s) for +: 'int' and 'str'

于是,解析器无情的抛出了一个TypeError异常。

动态类型:在运行期间确定变量的类型,python确定一个变量的类型是在你第一次给他赋值的时候;

强类型:有强制的类型定义,你有一个整数,除非显示的类型转换,否则绝不能将它当作一个字符串(例如直接尝试将一个整型和一个字符串做+运算);

因此,为了更加优雅的使用add函数,我们需要在执行+运算前,对a和b进行参数检查。这时候装饰器就显得非常有用:

import logging

logging.basicConfig(level = logging.INFO)

def add(a, b):

return a + b

def checkParams(fn):

def wrapper(a, b):

if isinstance(a, (int, float)) and isinstance(b, (int, float)): #检查参数a和b是否都为整型或浮点型

return fn(a, b) #是则调用fn(a, b)返回计算结果

#否则通过logging记录错误信息,并友好退出

logging.warning("variable 'a' and 'b' cannot be added")

return

return wrapper #fn引用add,被封存在闭包的执行环境中返回

if __name__ == "__main__":

#将add函数对象传入,fn指向add

#等号左侧的add,指向checkParams的返回值wrapper

add = checkParams(add)

add(3, 'hello') #经过类型检查,不会计算结果,而是记录日志并退出

注意checkParams函数:

首先看参数fn,当我们调用checkParams(add)的时候,它将成为函数对象add的一个本地(Local)引用;

在checkParams内部,我们定义了一个wrapper函数,添加了参数类型检查的功能,然后调用了fn(a, b),根据LEGB法则,解释器将搜索几个作用域,并最终在(Enclosing层)checkParams函数的本地作用域中找到fn;

注意最后的return wrapper,这将创建一个闭包,fn变量(add函数对象的一个引用)将会封存在闭包的执行环境中,不会随着checkParams的返回而被回收;

当调用add = checkParams(add)时,add指向了新的wrapper对象,它添加了参数检查和记录日志的功能,同时又能够通过封存的fn,继续调用原始的add进行+运算。

因此调用add(3, 'hello')将不会返回计算结果,而是打印出日志:

chiyu@chiyu-PC:~$ python func.py

WARNING:root:variable 'a' and 'b' cannot be added

有人觉得add = checkParams(add)这样的写法未免太过麻烦,于是python提供了一种更优雅的写法,被称为语法糖:

@checkParams

def add(a, b):

return a + b

这只是一种写法上的优化,解释器仍然会将它转化为add = checkParams(add)来执行。

6. 回归问题

def addspam(fn):

def new(*args):

print "spam,spam,spam"

return fn(*args)

return new

@addspam

def useful(a,b):

print a**2+b**2

首先看第二段代码:

@addspam装饰器,相当于执行了useful = addspam(useful)。在这里题主有一个理解误区:传递给addspam的参数,是useful这个函数对象本身,而不是它的一个调用结果;

再回到addspam函数体:

return new 返回一个闭包,fn被封存在闭包的执行环境中,不会随着addspam函数的返回被回收;

而fn此时是useful的一个引用,当执行return fn(*args)时,实际相当于执行了return useful(*args);

最后附上一张代码执行过程中的引用关系图,希望能帮助你理解:

python的内存管理机制

论坛

活动

招聘

专题

打开CSDN APP

Copyright © 1999-2020, CSDN.NET, All Rights Reserved

登录

XCCS_澍

关注

Python 的内存管理机制及调优手段? 原创

2018-08-05 06:50:53

XCCS_澍

码龄7年

关注

内存管理机制:引用计数、垃圾回收、内存池。

一、引用计数:

引用计数是一种非常高效的内存管理手段, 当一个 Python 对象被引用时其引用计数增加 1, 当其不再被一个变量引用时则计数减 1. 当引用计数等于 0 时对象被删除。

二、垃圾回收 :

1. 引用计数

引用计数也是一种垃圾收集机制,而且也是一种最直观,最简单的垃圾收集技术。当 Python 的某个对象的引用计数降为 0 时,说明没有任何引用指向该对象,该对象就成为要被回收的垃圾了。比如某个新建对象,它被分配给某个引用,对象的引用计数变为 1。如果引用被删除,对象的引用计数为 0,那么该对象就可以被垃圾回收。不过如果出现循环引用的话,引用计数机制就不再起有效的作用了

2. 标记清除

如果两个对象的引用计数都为 1,但是仅仅存在他们之间的循环引用,那么这两个对象都是需要被回收的,也就是说,它们的引用计数虽然表现为非 0,但实际上有效的引用计数为 0。所以先将循环引用摘掉,就会得出这两个对象的有效计数。

3. 分代回收

从前面“标记-清除”这样的垃圾收集机制来看,这种垃圾收集机制所带来的额外操作实际上与系统中总的内存块的数量是相关的,当需要回收的内存块越多时,垃圾检测带来的额外操作就越多,而垃圾回收带来的额外操作就越少;反之,当需回收的内存块越少时,垃圾检测就将比垃圾回收带来更少的额外操作。

python程序打包后源程序的运行机制?

如果有main就是从main入口进入执行

没有的话,我猜想是顺序执行

因为exe其实也就是把你的py文件需要用的包和环境打包,然后再其他设备上,即使没有安装python的也可以正常运行,其运行效果和你在本地调试运行应没有分别


当前名称:python函数运行机制,python运行方法
网址分享:http://cdweb.net/article/hcphje.html