网站建设资讯

NEWS

网站建设资讯

如何进行以太坊智能合约虚拟机EVM原理与实现

今天就跟大家聊聊有关如何进行以太坊智能合约虚拟机EVM原理与实现,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

网站建设哪家好,找创新互联!专注于网页设计、网站建设、微信开发、微信小程序开发、集团企业网站建设等服务项目。为回馈新老客户创新互联还提供了同仁免费建站欢迎大家使用!

以太坊 EVM原理与实现

通常智能合约的开发流程是用solidlity编写逻辑代码,再通过编译器编译元数据,最后再发布到以太坊上。以太坊底层通过EVM模块支持合约的执行与调用,调用时根据合约地址获取到代码,生成环境后载入到EVM中运行。

如何进行以太坊智能合约虚拟机EVM原理与实现

代码结构

.
├── analysis.go            //跳转目标判定
├── common.go
├── contract.go            //合约数据结构
├── contracts.go           //预编译好的合约
├── errors.go
├── evm.go                 //执行器 对外提供一些外部接口   
├── gas.go                 //call gas花费计算 一级指令耗费gas级别
├── gas_table.go           //指令耗费计算函数表
├── gen_structlog.go       
├── instructions.go        //指令操作
├── interface.go           
├── interpreter.go         //解释器 调用核心
├── intpool.go             //int值池
├── int_pool_verifier_empty.go
├── int_pool_verifier.go
├── jump_table.go           //指令和指令操作(操作,花费,验证)对应表
├── logger.go               //状态日志
├── memory.go               //EVM 内存
├── memory_table.go         //EVM 内存操作表 主要衡量操作所需内存大小
├── noop.go
├── opcodes.go              //Op指令 以及一些对应关系     
├── runtime
│   ├── env.go              //执行环境 
│   ├── fuzz.go
│   └── runtime.go          //运行接口 测试使用
├── stack.go                //栈
└── stack_table.go          //栈验证

指令

OpCode

文件opcodes.go中定义了所有的OpCode,该值是一个byte,合约编译出来的bytecode中,一个OpCode就是上面的一位。opcodes按功能分为9组(运算相关,块操作,加密相关等)。

    //算数相关
    const (
        // 0x0 range - arithmetic ops
        STOP OpCode = iota
        ADD
        MUL
        SUB
        DIV
        SDIV
        MOD
        SMOD
        ADDMOD
        MULMOD
        EXP
        SIGNEXTEND
    )

Instruction

文件jump.table.go定义了四种指令集合,每个集合实质上是个256长度的数组,名字翻译过来是(荒地,农庄,拜占庭,君士坦丁堡)估计是对应了EVM的四个发展阶段。指令集向前兼容。

	frontierInstructionSet       = NewFrontierInstructionSet()
	homesteadInstructionSet      = NewHomesteadInstructionSet()
	byzantiumInstructionSet      = NewByzantiumInstructionSet()
	constantinopleInstructionSet = NewConstantinopleInstructionSet()

具体每条指令结构如下,字段意思见注释。

type operation struct {
	//对应的操作函数
	execute executionFunc
	// 操作对应的gas消耗
	gasCost gasFunc
	// 栈深度验证
	validateStack stackValidationFunc
	// 操作所需空间
	memorySize memorySizeFunc

	halts   bool // 运算中止
	jumps   bool // 跳转(for)
	writes  bool // 是否写入
	valid   bool // 操作是否有效
	reverts bool // 出错回滚
	returns bool // 返回
}

按下面的ADD指令为例

定义
    ADD: {
        execute:       opAdd,
        gasCost:       constGasFunc(GasFastestStep),
        validateStack: makeStackFunc(2, 1),
        valid:         true,
    },
操作

不同的操作有所不同,操作对象根据指令不同可能影响栈,内存,statedb。

    func opAdd(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
        //弹出一个值,取出一个值(这个值依旧保存在栈上面,运算结束后这个值就改变成结果值)
        x, y := stack.pop(), stack.peek()
        //加运算
        math.U256(y.Add(x, y))
        //数值缓存
        evm.interpreter.intPool.put(x)
        return nil, nil
    }
gas花费

不同的运算有不同的初始值和对应的运算方法,具体的方法都定义在gas_table里面。 按加法的为例,一次加操作固定耗费为3。

    //固定耗费
    func constGasFunc(gas uint64) gasFunc {
        return func(gt params.GasTable, evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize uint64) (uint64, error) {
            return gas, nil
        }
    }

除此之外还有两个定义会影响gas的计算,通常作为量化的一个单位。

    //file go-ethereum/core/vm/gas.go
    const (
        GasQuickStep   uint64 = 2
        GasFastestStep uint64 = 3
        GasFastStep    uint64 = 5
        GasMidStep     uint64 = 8
        GasSlowStep    uint64 = 10
        GasExtStep     uint64 = 20

        GasReturn       uint64 = 0
        GasStop         uint64 = 0
        GasContractByte uint64 = 200
    )

    //file go-ethereum/params/gas_table.go
    type GasTable struct {
        ExtcodeSize uint64
        ExtcodeCopy uint64
        Balance     uint64
        SLoad       uint64
        Calls       uint64
        Suicide     uint64

        ExpByte uint64

        // CreateBySuicide occurs when the
        // refunded account is one that does
        // not exist. This logic is similar
        // to call. May be left nil. Nil means
        // not charged.
        CreateBySuicide uint64
    }
memorySize

因为加操作不需要申请内存因而memorySize为默认值0。

栈验证

先验证栈上的操作数够不够,再验证栈是否超出最大限制,加法在这里仅需验证其参数够不够,运算之后栈是要减一的。

    func makeStackFunc(pop, push int) stackValidationFunc {
        return func(stack *Stack) error {
            //深度验证
            if err := stack.require(pop); err != nil {
                return err
            }
            //最大值验证
            //StackLimit       uint64 = 1024 
            if stack.len()+push-pop > int(params.StackLimit) {
                return fmt.Errorf("stack limit reached %d (%d)", stack.len(), params.StackLimit)
            }
            return nil
        }
    }

智能合约

合约是EVM智能合约的存储单位也是解释器执行的基本单位,包含了代码,调用人,所有人,gas相关的信息.

    type Contract struct {
        // CallerAddress is the result of the caller which initialised this
        // contract. However when the "call method" is delegated this value
        // needs to be initialised to that of the caller's caller.
        CallerAddress common.Address
        caller        ContractRef
        self          ContractRef

        jumpdests destinations // result of JUMPDEST analysis.

        Code     []byte
        CodeHash common.Hash
        CodeAddr *common.Address
        Input    []byte

        Gas   uint64
        value *big.Int

        Args []byte

        DelegateCall bool
    }

EVM原生预编译了一批合约,定义在contracts.go里面。主要用于加密操作。

// PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
// contracts used in the Byzantium release.
var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
	common.BytesToAddress([]byte{1}): &ecrecover{},
	common.BytesToAddress([]byte{2}): &sha256hash{},
	common.BytesToAddress([]byte{3}): &ripemd160hash{},
	common.BytesToAddress([]byte{4}): &dataCopy{},
	common.BytesToAddress([]byte{5}): &bigModExp{},
	common.BytesToAddress([]byte{6}): &bn256Add{},
	common.BytesToAddress([]byte{7}): &bn256ScalarMul{},
	common.BytesToAddress([]byte{8}): &bn256Pairing{},
}

执行机

EVM中栈用于保存操作数,每个操作数的类型是big.int,这就是网上很多人说EVM是256位虚拟机的原因。执行opcode的时候,从上往下弹出操作数,作为操作的参数。

type Stack struct {
	data []*big.Int
}

func (st *Stack) push(d *big.Int) {
	// NOTE push limit (1024) is checked in baseCheck
	//stackItem := new(big.Int).Set(d)
	//st.data = append(st.data, stackItem)
	st.data = append(st.data, d)
}

func (st *Stack) peek() *big.Int {
	return st.data[st.len()-1]
}

func (st *Stack) pop() (ret *big.Int) {
	ret = st.data[len(st.data)-1]
	st.data = st.data[:len(st.data)-1]
	return
}

内存

内存用于一些内存操作(MLOAD,MSTORE,MSTORE8)及合约调用的参数拷贝(CALL,CALLCODE)。

内存数据结构,维护了一个byte数组,MLOAD,MSTORE读取存入的时候都要指定位置及长度才能准确的读写。

    type Memory struct {
        store       []byte
        lastGasCost uint64
    }

    // Set sets offset + size to value
    func (m *Memory) Set(offset, size uint64, value []byte) {
        // length of store may never be less than offset + size.
        // The store should be resized PRIOR to setting the memory
        if size > uint64(len(m.store)) {
            panic("INVALID memory: store empty")
        }

        // It's possible the offset is greater than 0 and size equals 0. This is because
        // the calcMemSize (common.go) could potentially return 0 when size is zero (NO-OP)
        if size > 0 {
            copy(m.store[offset:offset+size], value)
        }
    }

    func (self *Memory) Get(offset, size int64) (cpy []byte) {
        if size == 0 {
            return nil
        }

        if len(self.store) > int(offset) {
            cpy = make([]byte, size)
            copy(cpy, self.store[offset:offset+size])

            return
        }

        return
    }

内存操作

    func opMload(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
        offset := stack.pop()
        val := evm.interpreter.intPool.get().SetBytes(memory.Get(offset.Int64(), 32))
        stack.push(val)

        evm.interpreter.intPool.put(offset)
        return nil, nil
    }

    func opMstore(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
        // pop value of the stack
        mStart, val := stack.pop(), stack.pop()
        memory.Set(mStart.Uint64(), 32, math.PaddedBigBytes(val, 32))

        evm.interpreter.intPool.put(mStart, val)
        return nil, nil
    }

    func opMstore8(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
        off, val := stack.pop().Int64(), stack.pop().Int64()
        memory.store[off] = byte(val & 0xff)

        return nil, nil
    }

stateDb

合约本身不保存数据,那么合约的数据是保存在哪里呢?合约及其调用类似于数据库的日志,保存了合约定义以及对他的一系列操作,只要将这些操作执行一遍就能获取当前的结果,但是如果每次都要去执行就太慢了,因而这部分数据是会持久化到stateDb里面的。code中定义了两条指令SSTORE SLOAD用于从db中读写合约当前的状态。

    func opSload(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
        loc := common.BigToHash(stack.pop())
        val := evm.StateDB.GetState(contract.Address(), loc).Big()
        stack.push(val)
        return nil, nil
    }

    func opSstore(pc *uint64, evm *EVM, contract *Contract, memory *Memory, stack *Stack) ([]byte, error) {
        loc := common.BigToHash(stack.pop())
        val := stack.pop()
        evm.StateDB.SetState(contract.Address(), loc, common.BigToHash(val))

        evm.interpreter.intPool.put(val)
        return nil, nil
    }

执行过程

执行入口定义在evm.go中,功能就是组装执行环境(代码,执行人关系,参数等)。

    func (evm *EVM) Call(caller ContractRef, addr common.Address, input []byte, gas uint64, value *big.Int) (ret []byte, leftOverGas uint64, err error) {
        if evm.vmConfig.NoRecursion && evm.depth > 0 {
            return nil, gas, nil
        }

        // 合约调用深度检查
        if evm.depth > int(params.CallCreateDepth) {
            return nil, gas, ErrDepth
        }
        // balance 检查
        if !evm.Context.CanTransfer(evm.StateDB, caller.Address(), value) {
            return nil, gas, ErrInsufficientBalance
        }

        var (
            to       = AccountRef(addr)
            //保存当前状态,如果出错,就回滚到这个状态
            snapshot = evm.StateDB.Snapshot()
        )
        if !evm.StateDB.Exist(addr) {
            //创建调用对象的stateObject
            precompiles := PrecompiledContractsHomestead
            if evm.ChainConfig().IsByzantium(evm.BlockNumber) {
                precompiles = PrecompiledContractsByzantium
            }
            if precompiles[addr] == nil && evm.ChainConfig().IsEIP158(evm.BlockNumber) && value.Sign() == 0 {
                return nil, gas, nil
            }
            evm.StateDB.CreateAccount(addr)
        }
        //调用别人合约可能需要花钱
        evm.Transfer(evm.StateDB, caller.Address(), to.Address(), value)

        //创建合约环境
        contract := NewContract(caller, to, value, gas)
        contract.SetCallCode(&addr, evm.StateDB.GetCodeHash(addr), evm.StateDB.GetCode(addr))

        start := time.Now()

        // Capture the tracer start/end events in debug mode
        if evm.vmConfig.Debug && evm.depth == 0 {
            evm.vmConfig.Tracer.CaptureStart(caller.Address(), addr, false, input, gas, value)

            defer func() { // Lazy evaluation of the parameters
                evm.vmConfig.Tracer.CaptureEnd(ret, gas-contract.Gas, time.Since(start), err)
            }()
        }
        //执行操作
        ret, err = run(evm, contract, input)

        // When an error was returned by the EVM or when setting the creation code
        // above we revert to the snapshot and consume any gas remaining. Additionally
        // when we're in homestead this also counts for code storage gas errors.
        if err != nil {
            //错误回滚
            evm.StateDB.RevertToSnapshot(snapshot)
            if err != errExecutionReverted {
                contract.UseGas(contract.Gas)
            }
        }
        return ret, contract.Gas, err
    }

类似的函数有四个。详细区别见最后的参考。

  • Call A->B A,B的环境独立

  • CallCode、 和Call类似 区别在于storage位置不一样

  • DelegateCall、 和CallCode类似,区别在于msg.send不一样

  • StaticCall 和call相似 只是不能修改状态

Contract和参数构造完成后调用执行函数,执行函数会检查调用的是否会之前编译好的原生合约,如果是原生合约则调用原生合约,否则调用解释器执行函数运算合约。

    // run runs the given contract and takes care of running precompiles with a fallback to the byte code interpreter.
    func run(evm *EVM, contract *Contract, input []byte) ([]byte, error) {
        if contract.CodeAddr != nil {
            precompiles := PrecompiledContractsHomestead
            if evm.ChainConfig().IsByzantium(evm.BlockNumber) {
                precompiles = PrecompiledContractsByzantium
            }
            if p := precompiles[*contract.CodeAddr]; p != nil {
                return RunPrecompiledContract(p, input, contract)
            }
        }
        return evm.interpreter.Run(contract, input)
    }

解释器

    func (in *Interpreter) Run(contract *Contract, input []byte) (ret []byte, err error) {

        //返回数据
        in.returnData = nil

        var (
            op    OpCode        // 当前指令
            mem   = NewMemory() // 内存
            stack = newstack()  // 栈
            pc   = uint64(0)    // 指令位置
            cost uint64         // gas花费
            pcCopy  uint64      // debug使用
            gasCopy uint64      // debug使用
            logged  bool        // debug使用
        )
        contract.Input = input  //函数入参

        //*****省略******

        for atomic.LoadInt32(&in.evm.abort) == 0 {
            //获取一条指令及指令对应的操作
            op = contract.GetOp(pc)
            operation := in.cfg.JumpTable[op]
            //valid校验
            if !operation.valid {
                return nil, fmt.Errorf("invalid opcode 0x%x", int(op))
            }
            //栈校验
            if err := operation.validateStack(stack); err != nil {
                return nil, err
            }
            //修改检查
            if err := in.enforceRestrictions(op, operation, stack); err != nil {
                return nil, err
            }

            var memorySize uint64
            //计算内存 按操作所需要的操作数来算
            if operation.memorySize != nil {
                memSize, overflow := bigUint64(operation.memorySize(stack))
                if overflow {
                    return nil, errGasUintOverflow
                }
                // 
                if memorySize, overflow = math.SafeMul(toWordSize(memSize), 32); overflow {
                    return nil, errGasUintOverflow
                }
            }
            // 校验cost 调用前面提到的costfunc 计算本次操作cost消耗
            cost, err = operation.gasCost(in.gasTable, in.evm, contract, stack, mem, memorySize)
            if err != nil || !contract.UseGas(cost) {
                return nil, ErrOutOfGas  //超出挂掉
            }
            if memorySize > 0 {
                //如果本次操作需要消耗memory ,扩展memory 
                mem.Resize(memorySize)  
            }

            // 执行操作
            res, err := operation.execute(&pc, in.evm, contract, mem, stack)

            if verifyPool {
                verifyIntegerPool(in.intPool)
            }
            // 如果遇到return 设置返回值
            if operation.returns {
                in.returnData = res
            }

            switch {
            case err != nil:
                return nil, err       //报错
            case operation.reverts:   //出错回滚
                return res, errExecutionReverted
            case operation.halts:
                return res, nil       //停止
            case !operation.jumps:    //跳转
                pc++
            }
        }
        return nil, nil
    }

Solidity案例

和其他语言类似,有了字节码运行机,就可以在字节码上面再组织其他高级语言,而solidlity语言就是实现了这样的语言编译器,方便了合约编写,有利于推广以太坊dapp开发。

pragma solidity ^0.4.17;

contract simple {
      uint num = 0;
    function simple(){
        num = 123;
    }
    
  
    function add(uint i) public returns(uint){
        uint m = 111;
        num =num * i+m;
        return num;
    } 

}

生成的Opcodes码

JUMPDEST 函数入口

PUSH + JUMPI/JUMP 类似于调用函数

CALLDATASIZE + CALLDATALOAD 大约是获取函数参数

.code
  PUSH 80			contract simple {\n      uint ...
  PUSH 40			contract simple {\n      uint ...
  MSTORE 			contract simple {\n      uint ...
  PUSH 0			0  //成员变量初始值
  DUP1 			uint num = 0
  //从下面这条指令可以看出,初始化的时候成员变量就会存到statedb里面去
  SSTORE 			uint num = 0
  CALLVALUE 			function simple(){\n        nu...
  DUP1 			olidity ^
  ISZERO 			a 
  PUSH [tag] 1			a 
  JUMPI 			a 
  PUSH 0			r
  DUP1 			o
  REVERT 			.17;\n
contra
tag 1			a 
  //下面部分是构造函数执行的部分
  JUMPDEST 			a 
  POP 			function simple(){\n        nu...
  PUSH 7B			123
  PUSH 0			num  
  DUP2 			num = 123
  SWAP1 			num = 123
  //改变成员变量最后都会写入到statedb里面去
  SSTORE 			num = 123
  POP 			num = 123
  PUSH #[$] 0000000000000000000000000000000000000000000000000000000000000000			contract simple {\n      uint ...
  DUP1 			contract simple {\n      uint ...
  PUSH [$] 0000000000000000000000000000000000000000000000000000000000000000			contract simple {\n      uint ...
  PUSH 0			contract simple {\n      uint ...
  CODECOPY 			contract simple {\n      uint ...
  PUSH 0			contract simple {\n      uint ...
  RETURN 			contract simple {\n      uint ...
  //上面部分做完初始化之后并不会进入到runtime阶段
.data
  0:
    .code
      //下面这段代码大约是处理参数的
      PUSH 80			contract simple {\n      uint ...
      PUSH 40			contract simple {\n      uint ...
      MSTORE 			contract simple {\n      uint ...
      PUSH 4			contract simple {\n      uint ...
      CALLDATASIZE 			contract simple {\n      uint ...
      LT 			contract simple {\n      uint ...
      PUSH [tag] 1			contract simple {\n      uint ...
      JUMPI 			contract simple {\n      uint ...
      PUSH 0			contract simple {\n      uint ...
      CALLDATALOAD 			contract simple {\n      uint ...
      PUSH 100000000000000000000000000000000000000000000000000000000			contract simple {\n      uint ...
      SWAP1 			contract simple {\n      uint ...
      DIV 			contract simple {\n      uint ...
      PUSH FFFFFFFF			contract simple {\n      uint ...
      AND 			contract simple {\n      uint ...
      DUP1 			contract simple {\n      uint ...
      PUSH 1003E2D2			contract simple {\n      uint ...
      EQ 			contract simple {\n      uint ...
      PUSH [tag] 2			contract simple {\n      uint ...
      JUMPI 			contract simple {\n      uint ...
    tag 1			contract simple {\n      uint ...
      JUMPDEST 			contract simple {\n      uint ...
      PUSH 0			contract simple {\n      uint ...
      DUP1 			contract simple {\n      uint ...
      REVERT 			contract simple {\n      uint ...
    tag 2			function add(uint i) public re...
      JUMPDEST 			function add(uint i) public re...
      CALLVALUE 			function add(uint i) public re...
      DUP1 			olidity ^
      ISZERO 			a 
      PUSH [tag] 3			a 
      JUMPI 			a 
      PUSH 0			r
      DUP1 			o
      REVERT 			.17;\n
contra
    tag 3			a 
      JUMPDEST 			a 
      POP 			function add(uint i) public re...
      PUSH [tag] 4			function add(uint i) public re...
      PUSH 4			function add(uint i) public re...
      DUP1 			function add(uint i) public re...
      CALLDATASIZE 			function add(uint i) public re...
      SUB 			function add(uint i) public re...
      DUP2 			function add(uint i) public re...
      ADD 			function add(uint i) public re...
      SWAP1 			function add(uint i) public re...
      DUP1 			function add(uint i) public re...
      DUP1 			function add(uint i) public re...
      CALLDATALOAD 			function add(uint i) public re...
      SWAP1 			function add(uint i) public re...
      PUSH 20			function add(uint i) public re...
      ADD 			function add(uint i) public re...
      SWAP1 			function add(uint i) public re...
      SWAP3 			function add(uint i) public re...
      SWAP2 			function add(uint i) public re...
      SWAP1 			function add(uint i) public re...
      POP 			function add(uint i) public re...
      POP 			function add(uint i) public re...
      POP 			function add(uint i) public re...
      PUSH [tag] 5			function add(uint i) public re...
      JUMP 			function add(uint i) public re...
    tag 4			function add(uint i) public re...
      JUMPDEST 			function add(uint i) public re...
      PUSH 40			function add(uint i) public re...
      MLOAD 			function add(uint i) public re...
      DUP1 			function add(uint i) public re...
      DUP3 			function add(uint i) public re...
      DUP2 			function add(uint i) public re...
      MSTORE 			function add(uint i) public re...
      PUSH 20			function add(uint i) public re...
      ADD 			function add(uint i) public re...
      SWAP2 			function add(uint i) public re...
      POP 			function add(uint i) public re...
      POP 			function add(uint i) public re...
      PUSH 40			function add(uint i) public re...
      MLOAD 			function add(uint i) public re...
      DUP1 			function add(uint i) public re...
      SWAP2 			function add(uint i) public re...
      SUB 			function add(uint i) public re...
      SWAP1 			function add(uint i) public re...
      RETURN 			function add(uint i) public re...
    tag 5			function add(uint i) public re...
      //函数内容
JUMPDEST 			function add(uint i) public re...
      //这下面就是函数的代码了
      PUSH 0			uint //局部变量在栈里面
      DUP1 			uint m
      PUSH 6F			111
      SWAP1 			uint m = 111
      POP 			uint m = 111 //从push0到这里实现了定义局部变量并赋值
      DUP1 			m
      DUP4 			i            //获取参数
      PUSH 0			num
      SLOAD 			num      //上面那句和这句实现了读取成员变量
      MUL 			num * i      //乘
      ADD 			num * i+m    //加
      PUSH 0			num
      DUP2 			num =num * i+m
      SWAP1 			num =num * i+m   //这三句赋值
      SSTORE 			num =num * i+m   //成员变量存储
      POP 			num =num * i+m
      //下面几句实现return
      PUSH 0			num
      SLOAD 			num
      SWAP2 			return num    
      POP 			return num
      POP 			function add(uint i) public re...
      SWAP2 			function add(uint i) public re...
      SWAP1 			function add(uint i) public re...
      POP 			function add(uint i) public re...
      JUMP [out]			function add(uint i) public re...
    .data

如何进行以太坊智能合约虚拟机EVM原理与实现

看完上述内容,你们对如何进行以太坊智能合约虚拟机EVM原理与实现有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联行业资讯频道,感谢大家的支持。


分享名称:如何进行以太坊智能合约虚拟机EVM原理与实现
文章位置:http://cdweb.net/article/gsesip.html