双11的高并发流量是如何抗住,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
10余年品牌的成都网站建设公司,成百上千企业网站设计经验.价格合理,可准确把握网页设计诉求.提供定制网站建设、商城网站制作、微信小程序开发、响应式网站等服务,我们设计的作品屡获殊荣,是您值得信赖的专业网站设计公司。服务等级协议
我们常说的 N 个 9,就是对 SLA 的一个描述。SLA 全称是 Service Level Agreement,翻译为服务水平协议,也称服务等级协议,它表明了公有云提供服务的等级以及质量。
例如阿里云对外承诺的就是一个服务周期内集群服务可用性不低于 99.99%,如果低于这个标准,云服务公司就需要赔偿客户的损失。
做到 4 个 9 够好了吗
对互联网公司来说,SLA 就是网站或者 API 服务可用性的一个保证。
9 越多代表全年服务可用时间越长服务更可靠,4 个 9 的服务可用性,听起来已经很高了,但对于实际的业务场景,这个值可能并不够。
我们来做一个简单的计算,假设一个核心链路依赖 20 个服务,强依赖同时没有配置任何降级,并且这 20 个服务的可用性达到 4 个 9,也就是 99.99%。
那这个核心链路的可用性只有 99.99 的 20 次方=99.8%,如果有 10 亿次请求则有 3,000,000 次的失败请求,理想状况下,每年还是有 17 小时服务不可用。这是一个理想的估算,在实际的生产环境中,由于服务发布,宕机等各种各样的原因,情况肯定会比这个更差。对于一些比较敏感的业务,比如金融,或是对服务稳定要求较高的行业,比如订单或者支付业务,这样的情况是不能接受的。微服务的雪崩效应
除了对服务可用性的追求,微服务架构一个绕不过去的问题就是服务雪崩。在一个调用链路上,微服务架构各个服务之间组成了一个松散的整体,牵一发而动全身,服务雪崩是一个多级传导的过程。首先是某个服务提供者不可用,由于大量超时等待,继而导致服务调用者不可用,并且在整个链路上传导,继而导致系统瘫痪。限流降级怎么做
如同上面我们分析的,在大规模微服务架构的场景下,避免服务出现雪崩,要减少停机时间,要尽可能的提高服务可用性。提高服务可用性,可以从很多方向入手,比如缓存、池化、异步化、负载均衡、队列和降级熔断等手段。缓存以及队列等手段,增加系统的容量。限流和降级则是关心在到达系统瓶颈时系统的响应,更看重稳定性。
缓存和异步等提高系统的战力,限流降级关注的是防御。限流和降级,具体实施方法可以归纳为八字箴言,分别是限流,降级,熔断和隔离。限流和降级
限流顾名思义,提前对各个类型的请求设置最高的 QPS 阈值,若高于设置的阈值则对该请求直接返回,不再调用后续资源。限流需要结合压测等,了解系统的最高水位,也是在实际开发中应用最多的一种稳定性保障手段。降级则是当服务器压力剧增的情况下,根据当前业务情况及流量对一些服务和页面有策略的降级,以此释放服务器资源以保证核心任务的正常运行。从降级配置方式上,降级一般可以分为主动降级和自动降级。主动降级是提前配置,自动降级则是系统发生故障时,如超时或者频繁失败,自动降级。其中,自动降级,又可以分为以下策略:超时降级
失败次数降级
故障降级
熔断隔离
如果某个目标服务调用慢或者有大量超时,此时熔断该服务的调用,对于后续调用请求,不在继续调用目标服务,直接返回,快速释放资源。熔断一般需要设置不同的恢复策略,如果目标服务情况好转则恢复调用。服务隔离与前面的三个略有区别,我们的系统通常提供了不止一个服务,但是这些服务在运行时是部署在一个实例,或者一台物理机上面的。如果不对服务资源做隔离,一旦一个服务出现了问题,整个系统的稳定性都会受到影响!服务隔离的目的就是避免服务之间相互影响。
一般来说,隔离要关注两方面,一个是在哪里进行隔离,另外一个是隔离哪些资源。何处隔离:一次服务调用,涉及到的是服务提供方和调用方,我们所指的资源,也是两方的服务器等资源,服务隔离通常可以从提供方和调用方两个方面入手。
隔离什么:广义的服务隔离,不仅包括服务器资源,还包括数据库分库,缓存,索引等,这里我们只关注服务层面的隔离。
降级和熔断的区别
服务降级和熔断在概念上比较相近,通过两个场景,谈谈我自己的理解。熔断,一般是停止服务:典型的就是股市的熔断,如果大盘不受控制,直接休市,不提供服务,是保护大盘的一种方式。
降级,通常是有备用方案:从北京到济南,下雨导致航班延误,我可以乘坐高铁,如果高铁票买不到,也可以乘坐汽车或者开车过去。
两者的区别:降级一般是主动的,有预见性的,熔断通常是被动的,服务 A 降级以后,一般会有服务 B 来代替,而熔断通常是针对核心链路的处理。
在实际开发中,熔断的下一步通常就是降级。常用限流算法设计
刚才讲了限流的概念,那么怎样判断系统到达设置的流量阈值了?这就需要一些限流策略来支持,不同的限流算法有不同的特点,平滑程度也不同。计数器法
计数器法是限流算法里最简单也是最容易实现的一种算法。假设一个接口限制一分钟内的访问次数不能超过 100 个,维护一个计数器,每次有新的请求过来,计数器加一。这时候判断,如果计数器的值小于限流值,并且与上一次请求的时间间隔还在一分钟内,允许请求通过,否则拒绝请求,如果超出了时间间隔,要将计数器清零。
public class CounterLimiter {
//初始时间
private static long startTime = System.currentTimeMillis();
//初始计数值
private static final AtomicInteger ZERO = new AtomicInteger(0);
//时间窗口限制
private static final long interval = 10000;
//限制通过请求
private static int limit = 100;
//请求计数
private AtomicInteger requestCount = ZERO;
//获取限流
public boolean tryAcquire() {
long now = System.currentTimeMillis();
//在时间窗口内
if (now < startTime + interval) {
//判断是否超过大请求
if (requestCount.get() < limit) {
requestCount.incrementAndGet();
return true;
}
return false;
} else {
//超时重置
startTime = now;
requestCount = ZERO;
return true;
}
}
}
计数器限流可以比较容易的应用在分布式环境中,用一个单点的存储来保存计数值,比如用 Redis,并且设置自动过期时间,这时候就可以统计整个集群的流量,并且进行限流。计数器方式的缺点是不能处理临界问题,或者说限流策略不够平滑。假设在限流临界点的前后,分别发送 100 个请求,实际上在计数器置 0 前后的极短时间里,处理了 200 个请求,这是一个瞬时的高峰,可能会超过系统的限制。计数器限流允许出现 2*permitsPerSecond 的突发流量,可以使用滑动窗口算法去优化,具体不展开。漏桶算法
假设我们有一个固定容量的桶,桶底部可以漏水(忽略气压等,不是物理问题),并且这个漏水的速率可控的,那么我们可以通过这个桶来控制请求速度,也就是漏水的速度。我们不关心流进来的水,也就是外部请求有多少,桶满了之后,多余的水会溢出。漏桶算法的示意图如下:
将算法中的水换成实际应用中的请求,可以看到漏桶算法从入口限制了请求的速度。使用漏桶算法,我们可以保证接口会以一个常速速率来处理请求,所以漏桶算法不会出现临界问题。这里简单实现一下,也可以使用 Guava 的 SmoothWarmingUp 类,可以更好的控制漏桶算法:
public class LeakyLimiter {
//桶的容量
private int capacity;
//漏水速度
private int ratePerMillSecond;
//水量
private double water;
//上次漏水时间
private long lastLeakTime;
public LeakyLimiter(int capacity, int ratePerMillSecond) {
this.capacity = capacity;
this.ratePerMillSecond = ratePerMillSecond;
this.water = 0;
}
//获取限流
public boolean tryAcquire() {
//执行漏水,更新剩余水量
refresh();
//尝试加水,水满则拒绝
if (water + 1 > capacity) {
return false;
}
water = water + 1;
return true;
}
private void refresh() {
//当前时间
long currentTime = System.currentTimeMillis();
if (currentTime > lastLeakTime) {
//距上次漏水的时间间隔
long millisSinceLastLeak = currentTime - lastLeakTime;
long leaks = millisSinceLastLeak * ratePerMillSecond;
//允许漏水
if (leaks > 0) {
//已经漏光
if (water <= leaks) {
water = 0;
} else {
water = water - leaks;
}
this.lastLeakTime = currentTime;
}
}
}
}
令牌桶算法
漏桶是控制水流入的速度,令牌桶则是控制留出,通过控制 Token,调节流量。假设一个大小恒定的桶,桶里存放着令牌(Token)。桶一开始是空的,现在以一个固定的速率往桶里填充,直到达到桶的容量,多余的令牌将会被丢弃。如果令牌不被消耗,或者被消耗的速度小于产生的速度,令牌就会不断地增多,直到把桶填满。后面再产生的令牌就会从桶中溢出。
最后桶中可以保存的大令牌数永远不会超过桶的大小,每当一个请求过来时,就会尝试从桶里移除一个令牌,如果没有令牌的话,请求无法通过。
public class TokenBucketLimiter {
private long capacity;
private long windowTimeInSeconds;
long lastRefillTimeStamp;
long refillCountPerSecond;
long availableTokens;
public TokenBucketLimiter(long capacity, long windowTimeInSeconds) {
this.capacity = capacity;
this.windowTimeInSeconds = windowTimeInSeconds;
lastRefillTimeStamp = System.currentTimeMillis();
refillCountPerSecond = capacity / windowTimeInSeconds;
availableTokens = 0;
}
public long getAvailableTokens() {
return this.availableTokens;
}
public boolean tryAcquire() {
//更新令牌桶
refill();
if (availableTokens > 0) {
--availableTokens;
return true;
} else {
return false;
}
}
private void refill() {
long now = System.currentTimeMillis();
if (now > lastRefillTimeStamp) {
long elapsedTime = now - lastRefillTimeStamp;
int tokensToBeAdded = (int) ((elapsedTime / 1000) * refillCountPerSecond);
if (tokensToBeAdded > 0) {
availableTokens = Math.min(capacity, availableTokens + tokensToBeAdded);
lastRefillTimeStamp = now;
}
}
}
}
这两种算法的主要区别在于漏桶算法能够强行限制数据的传输速率,而令牌桶算法在能够限制数据的平均传输速率外,还允许某种程度的突发传输。在令牌桶算法中,只要令牌桶中存在令牌,那么就允许突发地传输数据直到达到用户配置的门限,因此它适合于具有突发特性的流量。漏桶和令牌桶的比较
漏桶和令牌桶算法实现可以一样,但是方向是相反的,对于相同的参数得到的限流效果是一样的。主要区别在于令牌桶允许一定程度的突发,漏桶主要目的是平滑流入速率,考虑一个临界场景,令牌桶内积累了 100 个 Token,可以在一瞬间通过。但是因为下一秒产生 Token 的速度是固定的,所以令牌桶允许出现瞬间出现 permitsPerSecond 的流量,但是不会出现 2*permitsPerSecond 的流量,漏桶的速度则始终是平滑的。使用 RateLimiter 实现限流
Google 开源工具包 Guava 提供了限流工具类 RateLimiter,该类基于令牌桶算法实现流量限制,使用方便。RateLimiter 使用的是令牌桶的流控算法,RateLimiter 会按照一定的频率往桶里扔令牌,线程拿到令牌才能执行。比如你希望自己的应用程序 QPS 不要超过 1000,那么 RateLimiter 设置 1000 的速率后,就会每秒往桶里扔 1000 个令牌,看下方法的说明:RateLimter 提供的 API 可以直接应用,其中 acquire 会阻塞,类似 JUC 的信号量 Semphore,tryAcquire 方法则是非阻塞的:
public class RateLimiterTest {
public static void main(String[] args) throws InterruptedException {
//允许10个,permitsPerSecond
RateLimiter limiter = RateLimiter.create(10);
for(int i=1;i<20;i++){
if (limiter.tryAcquire(1)){
System.out.println("第"+i+"次请求成功");
}else{
System.out.println("第"+i+"次请求拒绝");
}
}
}
}
总结
本文从服务可用性开始,分析了在业务高峰期通过限流降级保障服务高可用的重要性。看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联-成都网站建设公司行业资讯频道,感谢您对创新互联的支持。