这篇文章给大家介绍怎么在Python中利用Opencv识别PCB板图片,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
创新互联建站专注于网站建设|网站维护|优化|托管以及网络推广,积累了大量的网站设计与制作经验,为许多企业提供了网站定制设计服务,案例作品覆盖墙体彩绘等行业。能根据企业所处的行业与销售的产品,结合品牌形象的塑造,量身定制品质网站。1、在整个图像区域发现与给定子图像匹配的小块区域
2、选取模板图像T(给定的子图像)
3、另外需要一个待检测的图像——源图像S
4、工作方法:在检测图像上,从左到右,从上到下计算模板图像与重叠, 子图像的匹配度,匹配程度越大,两者相同的可能性就越大。
OpenCV提供了6种模板匹配算法:
平方差匹配法CV_TM_SQDIFF;
归一化平方差匹配法CV_TM_SQDIFF_NORMED;
相关匹配法CV_TM_CCORR;
归一化相关匹配法CV_TM_CCORR_NORMED;
相关系数匹配法CV_TM_CCOEFF;
归一化相关系数匹配法CV_TM_CCOEFF_NORMED;
后面经过实验,我们主要是从以上的六种中选择了归一化相关系数匹配法CV_TM_CCOEFF_NORMED,基本原理公式为:
import cv2 import numpy as np from matplotlib import pyplot as plt #读取检测图像 img = cv2.imread('img8.bmp', 0) #读取模板图像 template1=cv2.imread('moban1.bmp', 0) template2=...... #建立模板列表 template=[template1,template2,template3,template4] # 模板匹配:归一化相关系数匹配方法 res1=cv2.matchTemplate(img, template1, cv2.TM_CCOEFF_NORMED) res2=cv2.matchTemplate(......) #提取相关系数 min_val1, max_val1, min_loc1, max_loc1 =cv2.minMaxLoc(res1) min_val2, ...... #相关系数对比(max_val),越接近1,匹配程度越高 max_val=[1-max_val1,1-max_val2,1-max_val3,1-max_val4] j=max_val.index(min(max_val)) #根据提取的相关系数得出对应匹配程度高的模板 h, w = template[j].shape[:2] # 计算模板图像的高和宽 rows->h, cols->w pes=cv2.matchTemplate(img, template[j], cv2.TM_CCOEFF_NORMED) #模板匹配 in_val, ax_val, in_loc, ax_loc =cv2.minMaxLoc(pes) #在原图中框出模板匹配的位置 left_top = ax_loc # 左上角 right_bottom = (left_top[0] + w, left_top[1] + h) # 右下角 cv2.rectangle(img, left_top, right_bottom, 255, 2) # 画出矩形位置 #绘制模板图像 plt.subplot(121), plt.imshow(template[j], cmap='gray') plt.title('pcb type'),plt.xticks([]), plt.yticks([]) #绘制检测图像 plt.subplot(122), plt.imshow(img, cmap='gray') plt.title('img'), plt.xticks([]), plt.yticks([]) plt.show()
关于怎么在Python中利用Opencv识别PCB板图片就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。