网站建设资讯

NEWS

网站建设资讯

python函数绘制图像,python定义画函数图像函数

不能直接写出函数的表达式 怎么在python里画函数图象呢?

不写出y=f(x)这样的表达式,由隐函数的等式直接绘制图像,以x²+y²+xy=1的图像为例,使用sympy间接调用matplotlib工具的代码和该二次曲线图像如下(注意python里的乘幂符号是**而不是^,还有,python的sympy工具箱的等式不是a==b,而是a-b或者Eq(a,b),这几点和matlab的区别很大)

创新互联公司专注于企业营销型网站建设、网站重做改版、无极网站定制设计、自适应品牌网站建设、H5高端网站建设商城网站建设、集团公司官网建设、成都外贸网站制作、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为无极等各大城市提供网站开发制作服务。

直接在命令提示行的里面运行代码的效果

from sympy import *;

x,y=symbols('x y');

plotting.plot_implicit(x**2+y**2+x*y-1);

Python绘图Turtle库详解

 Turtle库是Python语言中一个很流行的绘制图像的函数库,想象一个小乌龟,在一个横轴为x、纵轴为y的坐标系原点,(0,0)位置开始,它根据一组函数指令的控制,在这个平面坐标系中移动,从而在它爬行的路径上绘制了图形。

turtle 绘图的基础知识:

1. 画布(canvas)

    画布就是turtle为我们展开用于绘图区域,我们可以设置它的大小和初始位置。

    设置画布大小

turtle.screensize(canvwidth=None, canvheight=None, bg=None),参数分别为画布的宽(单位像素), 高, 背景颜色。

    如:turtle.screensize(800,600, "green")

turtle.screensize() #返回默认大小(400, 300)

    turtle.setup(width=0.5, height=0.75,

startx=None, starty=None),参数:width, height: 输入宽和高为整数时, 表示像素; 为小数时, 表示占据电脑屏幕的比例,(startx, starty): 这一坐标表示矩形窗口左上角顶点的位置, 如果为空,则窗口位于屏幕中心。

    如:turtle.setup(width=0.6,height=0.6)

turtle.setup(width=800,height=800, startx=100, starty=100)

2. 画笔

2.1 画笔的状态

    在画布上,默认有一个坐标原点为画布中心的坐标轴,坐标原点上有一只面朝x轴正方向小乌龟。这里我们描述小乌龟时使用了两个词语:坐标原点(位置),面朝x轴正方向(方向), turtle绘图中,就是使用位置方向描述小乌龟(画笔)的状态。

2.2 画笔的属性

    画笔(画笔的属性,颜色、画线的宽度等)

    1) turtle.pensize():设置画笔的宽度;

    2) turtle.pencolor():没有参数传入,返回当前画笔颜色,传入参数设置画笔颜色,可以是字符串如"green", "red",也可以是RGB 3元组。

    3) turtle.speed(speed):设置画笔移动速度,画笔绘制的速度范围[0,10]整数,数字越大越快。

2.3 绘图命令

     操纵海龟绘图有着许多的命令,这些命令可以划分为3种:一种为运动命令,一种为画笔控制命令,还有一种是全局控制命令。

(1)    画笔运动命令

命令说明

turtle.forward(distance)向当前画笔方向移动distance像素长度

turtle.backward(distance)向当前画笔相反方向移动distance像素长度

turtle.right(degree)顺时针移动degree°

turtle.left(degree)逆时针移动degree°

turtle.pendown()移动时绘制图形,缺省时也为绘制

turtle.goto(x,y)将画笔移动到坐标为x,y的位置

turtle.penup()提起笔移动,不绘制图形,用于另起一个地方绘制

turtle.circle()画圆,半径为正(负),表示圆心在画笔的左边(右边)画圆

setx( )将当前x轴移动到指定位置

sety( )将当前y轴移动到指定位置

setheading(angle)设置当前朝向为angle角度

home()设置当前画笔位置为原点,朝向东。

dot(r)绘制一个指定直径和颜色的圆点

(2)     画笔控制命令

命令说明

turtle.fillcolor(colorstring)绘制图形的填充颜色

turtle.color(color1, color2)同时设置pencolor=color1, fillcolor=color2

turtle.filling()返回当前是否在填充状态

turtle.begin_fill()准备开始填充图形

turtle.end_fill()填充完成

turtle.hideturtle()隐藏画笔的turtle形状

turtle.showturtle()显示画笔的turtle形状

(3)    全局控制命令

命令说明

turtle.clear()清空turtle窗口,但是turtle的位置和状态不会改变

turtle.reset()清空窗口,重置turtle状态为起始状态

turtle.undo()撤销上一个turtle动作

turtle.isvisible()返回当前turtle是否可见

stamp()复制当前图形

turtle.write(s

[,font=("font-name",font_size,"font_type")])

写文本,s为文本内容,font是字体的参数,分别为字体名称,大小和类型;font为可选项,font参数也是可选项

(4)    其他命令

命令说明

turtle.mainloop()或turtle.done()启动事件循环 -调用Tkinter的mainloop函数。

必须是乌龟图形程序中的最后一个语句。

turtle.mode(mode=None)设置乌龟模式(“standard”,“logo”或“world”)并执行重置。如果没有给出模式,则返回当前模式。

模式初始龟标题正角度

standard向右(东)逆时针

logo向上(北)顺时针

turtle.delay(delay=None)设置或返回以毫秒为单位的绘图延迟。

turtle.begin_poly()开始记录多边形的顶点。当前的乌龟位置是多边形的第一个顶点。

turtle.end_poly()停止记录多边形的顶点。当前的乌龟位置是多边形的最后一个顶点。将与第一个顶点相连。

turtle.get_poly()返回最后记录的多边形。

Python实操:手把手教你用Matplotlib把数据画出来

作者:迈克尔·贝耶勒(Michael Beyeler)

如需转载请联系华章 科技

如果已安装Anaconda Python版本,就已经安装好了可以使用的 Matplotlib。否则,可能要访问官网并从中获取安装说明:

正如使用np作为 NumPy 的缩写,我们将使用一些标准的缩写来表示 Matplotlib 的引入:

在本书中,plt接口会被频繁使用。

让我们创建第一个绘图。

假设想要画出正弦函数sin(x)的线性图。得到函数在x坐标轴上0≤x<10内所有点的值。我们将使用 NumPy 中的 linspace 函数来在x坐标轴上创建一个从0到10的线性空间,以及100个采样点:

可以使用 NumPy 中的sin函数得到所有x点的值,并通过调用plt中的plot函数把结果画出来:

你亲自尝试了吗?发生了什么吗?有没有什么东西出现?

实际情况是,取决于你在哪里运行脚本,可能无法看到任何东西。有下面几种可能性:

1. 从.py脚本中绘图

如果从一个脚本中运行 Matplotlib,需要加上下面的这行调用:

在脚本末尾调用这个函数,你的绘图就会出现!

2. 从 IPython shell 中绘图

这实际上是交互式地执行Matplotlib最方便的方式。为了让绘图出现,需要在启动 IPython 后使用所谓的%matplotlib魔法命令。

接下来,无须每次调用plt.show()函数,所有的绘图将会自动出现。

3. 从 Jupyter Notebook 中绘图

如果你是从基于浏览器的 Jupyter Notebook 中看这段代码,需要使用同样的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入图形,这会有两种输出选项:

在本书中,将会使用inline选项:

现在再次尝试一下:

上面的命令会得到下面的绘图输出结果:

如果想要把绘图保存下来留作以后使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:

仅需要确保你使用了支持的文件后缀,比如.jpg、.png、.tif、.svg、.eps或者.pdf。

作为本章最后一个测试,让我们对外部数据集进行可视化,比如scikit-learn中的数字数据集。

为此,需要三个可视化工具:

那么开始引入这些包吧:

第一步是载入实际数据:

如果没记错的话,digits应该有两个不同的数据域:data域包含了真正的图像数据,target域包含了图像的标签。相对于相信我们的记忆,我们还是应该对digits稍加 探索 。输入它的名字,添加一个点号,然后按Tab键:digits.TAB,这个操作将向我们展示digits也包含了一些其他的域,比如一个名为images的域。images和data这两个域,似乎简单从形状上就可以区分。

两种情况中,第一维对应的都是数据集中的图像数量。然而,data中所有像素都在一个大的向量中排列,而images保留了各个图像8×8的空间排列。

因此,如果想要绘制出一副单独的图像,使用images将更加合适。首先,使用NumPy的数组切片从数据集中获取一幅图像:

这里是从1797个元素的数组中获取了它的第一行数据,这行数据对应的是8×8=64个像素。下面就可以使用plt中的imshow函数来绘制这幅图像:

上面的命令得到下面的输出:

此外,这里也使用cmap参数指定了一个颜色映射。默认情况下,Matplotlib 使用MATLAB默认的颜色映射jet。然而,在灰度图像的情况下,gray颜色映射更有效。

最后,可以使用plt的subplot函数绘制全部数字的样例。subplot函数与MATLAB中的函数一样,需要指定行数、列数以及当前的子绘图索引(从1开始计算)。我们将使用for 循环在数据集中迭代出前十张图像,每张图像都分配到一个单独的子绘图中。

这会得到下面的输出结果:

关于作者:Michael Beyeler,华盛顿大学神经工程和数据科学专业的博士后,主攻仿生视觉计算模型,用以为盲人植入人工视网膜(仿生眼睛),改善盲人的视觉体验。 他的工作属于神经科学、计算机工程、计算机视觉和机器学习的交叉领域。同时他也是多个开源项目的积极贡献者。

本文摘编自《机器学习:使用OpenCV和Python进行智能图像处理》,经出版方授权发布。

Python matplotlib之函数图像绘制、线条rc参数设置

为避免中文显示出错,需导入matplotlib.pylab库

1.2.1 确定数据

1.2.2 创建画布

1.2.3 添加标题

1.2.4 添加x,y轴名称

1.2.5 添加x,y轴范围

1.2.6 添加x,y轴刻度

1.2.7 绘制曲线、图例, 并保存图片

保存图片时,dpi为清晰度,数值越高越清晰。请注意,函数结尾处,必须加plt.show(),不然图像不显示。

绘制流程与绘制不含子图的图像一致,只需注意一点:创建画布。

合理调整figsize、dpi,可避免出现第一幅图横轴名称与第二幅图标题相互遮盖的现象.

2.2.1 rc参数类型

2.2.2 方法1:使用rcParams设置

2.2.3 方法2:plot内设置

2.2.4 方法3:plot内简化设置

方法2中,线条形状,linestyle可简写为ls;线条宽度,linewidth可简写为lw;线条颜色,color可简写为c,等等。

用Python画图

今天开始琢磨用Python画图,没使用之前是一脸懵的,我使用的开发环境是Pycharm,这个输出的是一行行命令,这个图画在哪里呢?

搜索之后发现,它会弹出一个对话框,然后就开始画了,比如下图

第一个常用的库是Turtle,它是Python语言中一个很流行的绘制图像的函数库,这个词的意思就是乌龟,你可以想象下一个小乌龟在一个x和y轴的平面坐标系里,从原点开始根据指令控制,爬行出来就是绘制的图形了。

它最常用的指令就是旋转和移动,比如画个圆,就是绕着圆心移动;再比如上图这个怎么画呢,其实主要就两个命令:

turtle.forward(200)

turtle.left(170)

第一个命令是移动200个单位并画出来轨迹

第二个命令是画笔顺时针转170度,注意此时并没有移动,只是转角度

然后呢? 循环重复就画出来这个图了

好玩吧。

有需要仔细研究的可以看下这篇文章 ,这个牛人最后用这个库画个移动的钟表,太赞了。

Turtle虽好玩,但是我想要的是我给定数据,然后让它画图,这里就找到另一个常用的画图的库了。

Matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地行制图。其中,matplotlib的pyplot模块一般是最常用的,可以方便用户快速绘制二维图表。

使用起来也挺简单,

首先import matplotlib.pyplot as plt 导入画图的图。

然后给定x和y,用这个命令plt.plot(x, y)就能画图了,接着用plt.show()就可以把图形展示出来。

接着就是各种完善,比如加标题,设定x轴和y轴标签,范围,颜色,网格等等,在 这篇文章里介绍的很详细。

现在互联网的好处就是你需要什么内容,基本上都能搜索出来,而且还是免费的。

我为什么要研究这个呢?当然是为了用,比如我把比特币的曲线自己画出来可好?

假设现在有个数据csv文件,一列是日期,另一列是比特币的价格,那用这个命令画下:

这两列数据读到pandas中,日期为df['time']列,比特币价格为df['ini'],那我只要使用如下命令

plt.plot(df['time'], df['ini'])

plt.show()

就能得到如下图:

自己画的是不是很香,哈哈!

然后呢,我在上篇文章 中介绍过求Ahr999指数,那可不可以也放到这张图中呢?不就是加一条命令嘛

plt.plot(df['time'], df['Ahr999'])

图形如下:

但是,Ahr999指数怎么就一条线不动啊, 原来两个Y轴不一致,显示出来太怪了,需要用多Y轴,问题来了。

继续谷歌一下,把第二个Y轴放右边就行了,不过呢得使用多图,重新绘制

fig = plt.figure() # 多图

ax1 = fig.add_subplot(111)

ax1.plot(df['time'], df['ini'], label="BTC price")  # 绘制第一个图比特币价格

ax1.set_ylabel('BTC price') # 加上标签

# 第二个直接对称就行了

ax2 = ax1.twinx()# 在右边增加一个Y轴

ax2.plot(df['time'], df['Ahr999'], 'r', label="ahr999")  # 绘制第二个图Ahr999指数,红色

ax2.set_ylim([0, 50])# 设定第二个Y轴范围

ax2.set_ylabel('ahr999')

plt.grid(color="k", linestyle=":")# 网格

fig.legend(loc="center")#图例

plt.show()

跑起来看看效果,虽然丑了点,但终于跑通了。

这样就可以把所有指数都绘制到一张图中,等等,三个甚至多个Y轴怎么加?这又是一个问题,留给爱思考爱学习的你。

有了自己的数据,建立自己的各个指数,然后再放到图形界面中,同时针对异常情况再自动进行提醒,比如要抄底了,要卖出了,用程序做出自己的晴雨表。


当前文章:python函数绘制图像,python定义画函数图像函数
URL标题:http://cdweb.net/article/dscsgde.html