网站建设资讯

NEWS

网站建设资讯

go语言map加锁 go中map存储

Go语言——sync.Map详解

sync.Map是1.9才推荐的并发安全的map,除了互斥量以外,还运用了原子操作,所以在这之前,有必要了解下 Go语言——原子操作

10年积累的网站建设、网站设计经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站设计后付款的网站建设流程,更有扶绥免费网站建设让你可以放心的选择与我们合作。

go1.10\src\sync\map.go

entry分为三种情况:

从read中读取key,如果key存在就tryStore。

注意这里开始需要加锁,因为需要操作dirty。

条目在read中,首先取消标记,然后将条目保存到dirty里。(因为标记的数据不在dirty里)

最后原子保存value到条目里面,这里注意read和dirty都有条目。

总结一下Store:

这里可以看到dirty保存了数据的修改,除非可以直接原子更新read,继续保持read clean。

有了之前的经验,可以猜测下load流程:

与猜测的 区别 :

由于数据保存两份,所以删除考虑:

先看第二种情况。加锁直接删除dirty数据。思考下貌似没什么问题,本身就是脏数据。

第一种和第三种情况唯一的区别就是条目是否被标记。标记代表删除,所以直接返回。否则CAS操作置为nil。这里总感觉少点什么,因为条目其实还是存在的,虽然指针nil。

看了一圈貌似没找到标记的逻辑,因为删除只是将他变成nil。

之前以为这个逻辑就是简单的将为标记的条目拷贝给dirty,现在看来大有文章。

p == nil,说明条目已经被delete了,CAS将他置为标记删除。然后这个条目就不会保存在dirty里面。

这里其实就跟miss逻辑串起来了,因为miss达到阈值之后,dirty会全量变成read,也就是说标记删除在这一步最终删除。这个还是很巧妙的。

真正的删除逻辑:

很绕。。。。

Go语言使用 map 时尽量不要在 big map 中保存指针

不知道你有没有听过这么一句:在使用 map 时尽量不要在 big map 中保存指针。好吧,你现在已经听过了:)为什么呢?原因在于 Go 语言的垃圾回收器会扫描标记 map 中的所有元素,GC 开销相当大,直接GG。

这两天在《Mastering Go》中看到 GC 这一章节里面对比 map 和 slice 在垃圾回收中的效率对比,书中只给出结论没有说明理由,这我是不能忍的,于是有了这篇学习笔记。扯那么多,Show Your Code

这是一个简单的测试程序,保存字符串的 map 和 保存整形的 map GC 的效率相差几十倍,是不是有同学会说明明保存的是 string 哪有指针?这个要说到 Go 语言中 string 的底层实现了,源码在 src/runtime/string.go里,可以看到 string 其实包含一个指向数据的指针和一个长度字段。注意这里的是否包含指针,包括底层的实现。

Go 语言的 GC 会递归遍历并标记所有可触达的对象,标记完成之后将所有没有引用的对象进行清理。扫描到指针就会往下接着寻找,一直到结束。

Go 语言中 map 是基于 数组和链表 的数据结构实现的,通过 优化的拉链法 解决哈希冲突,每个 bucket 可以保存 8 对键值,在 8 个键值对数据后面有一个 overflow 指针,因为桶中最多只能装 8 个键值对,如果有多余的键值对落到了当前桶,那么就需要再构建一个桶(称为溢出桶),通过 overflow 指针链接起来。

因为 overflow 指针的缘故,所以无论 map 保存的是什么,GC 的时候就会把所有的 bmap 扫描一遍,带来巨大的 GC 开销。官方 issues 就有关于这个问题的讨论, runtime: Large maps cause significant GC pauses #9477

无脑机翻如下:

如果我们有一个map [k] v,其中k和v都不包含指针,并且我们想提高扫描性能,则可以执行以下操作。

将“ allOverflow [] unsafe.Pointer”添加到 hmap 并将所有溢出存储桶存储在其中。 然后将 bmap 标记为noScan。 这将使扫描非常快,因为我们不会扫描任何用户数据。

实际上,它将有些复杂,因为我们需要从allOverflow中删除旧的溢出桶。 而且它还会增加 hmap 的大小,因此也可能需要重新整理数据。

最终官方在 hmap 中增加了 overflow 相关字段完成了上面的优化,这是具体的 commit 地址。

下面看下具体是如何实现的,源码基于 go1.15,src/cmd/compile/internal/gc/reflect.go 中

通过注释可以看出,如果 map 中保存的键值都不包含指针(通过 Haspointers 判断),就使用一个 uintptr 类型代替 bucket 的指针用于溢出桶 overflow 字段,uintptr 类型在 GO 语言中就是个大小可以保存得下指针的整数,不是指针,就相当于实现了 将 bmap 标记为 noScan, GC 的时候就不会遍历完整个 map 了。随着不断的学习,愈发感慨 GO 语言中很多模块设计得太精妙了。

差不多说清楚了,能力有限,有不对的地方欢迎留言讨论,源码位置还是问的群里大佬 _

Golang中sync.Map的实现原理

前面,我们讲了map的用法以及原理 Golang中map的实现原理 ,但我们知道,map在并发读写的情况下是不安全。需要并发读写时,一般的做法是加锁,但这样性能并不高,Go语言在 1.9 版本中提供了一种效率较高的并发安全的 sync.Map,今天,我们就来讲讲 sync.Map的用法以及原理

sync.Map与map不同,不是以语言原生形态提供,而是在 sync 包下的特殊结构:

我们下来看下sync.Map结构体

结构体之间的关系如下图所示:

总结一下:

Load方法比较简单,总结一下:

总结如下:

goland map底层原理

map 是Go语言中基础的数据结构,在日常的使用中经常被用到。但是它底层是如何实现的呢?

总体来说golang的map是hashmap,是使用数组+链表的形式实现的,使用拉链法消除hash冲突。

golang的map由两种重要的结构,hmap和bmap(下文中都有解释),主要就是hmap中包含一个指向bmap数组的指针,key经过hash函数之后得到一个数,这个数低位用于选择bmap(当作bmap数组指针的下表),高位用于放在bmap的[8]uint8数组中,用于快速试错。然后一个bmap可以指向下一个bmap(拉链)。

Golang中map的底层实现是一个散列表,因此实现map的过程实际上就是实现散表的过程。在这个散列表中,主要出现的结构体有两个,一个叫 hmap (a header for a go map),一个叫 bmap (a bucket for a Go map,通常叫其bucket)。这两种结构的样子分别如下所示:

hmap :

图中有很多字段,但是便于理解map的架构,你只需要关心的只有一个,就是标红的字段: buckets数组 。Golang的map中用于存储的结构是bucket数组。而bucket(即bmap)的结构是怎样的呢?

bucket :

相比于hmap,bucket的结构显得简单一些,标红的字段依然是“核心”,我们使用的map中的key和value就存储在这里。“高位哈希值”数组记录的是当前bucket中key相关的“索引”,稍后会详细叙述。还有一个字段是一个指向扩容后的bucket的指针,使得bucket会形成一个链表结构。例如下图:

由此看出hmap和bucket的关系是这样的:

而bucket又是一个链表,所以,整体的结构应该是这样的:

哈希表的特点是会有一个哈希函数,对你传来的key进行哈希运算,得到唯一的值,一般情况下都是一个数值。Golang的map中也有这么一个哈希函数,也会算出唯一的值,对于这个值的使用,Golang也是很有意思。

Golang把求得的值按照用途一分为二:高位和低位。

如图所示,蓝色为高位,红色为低位。 然后低位用于寻找当前key属于hmap中的哪个bucket,而高位用于寻找bucket中的哪个key。上文中提到:bucket中有个属性字段是“高位哈希值”数组,这里存的就是蓝色的高位值,用来声明当前bucket中有哪些“key”,便于搜索查找。 需要特别指出的一点是:我们map中的key/value值都是存到同一个数组中的。数组中的顺序是这样的:

并不是key0/value0/key1/value1的形式,这样做的好处是:在key和value的长度不同的时候,可 以消除padding(内存对齐)带来的空间浪费 。

现在,我们可以得到Go语言map的整个的结构图了:(hash结果的低位用于选择把KV放在bmap数组中的哪一个bmap中,高位用于key的快速预览,用于快速试错)

map的扩容

当以上的哈希表增长的时候,Go语言会将bucket数组的数量扩充一倍,产生一个新的bucket数组,并将旧数组的数据迁移至新数组。

加载因子

判断扩充的条件,就是哈希表中的加载因子(即loadFactor)。

加载因子是一个阈值,一般表示为:散列包含的元素数 除以 位置总数。是一种“产生冲突机会”和“空间使用”的平衡与折中:加载因子越小,说明空间空置率高,空间使用率小,但是加载因子越大,说明空间利用率上去了,但是“产生冲突机会”高了。

每种哈希表的都会有一个加载因子,数值超过加载因子就会为哈希表扩容。

Golang的map的加载因子的公式是:map长度 / 2^B(这是代表bmap数组的长度,B是取的低位的位数)阈值是6.5。其中B可以理解为已扩容的次数。

当Go的map长度增长到大于加载因子所需的map长度时,Go语言就会将产生一个新的bucket数组,然后把旧的bucket数组移到一个属性字段oldbucket中。注意:并不是立刻把旧的数组中的元素转义到新的bucket当中,而是,只有当访问到具体的某个bucket的时候,会把bucket中的数据转移到新的bucket中。

如下图所示:当扩容的时候,Go的map结构体中,会保存旧的数据,和新生成的数组

上面部分代表旧的有数据的bucket,下面部分代表新生成的新的bucket。蓝色代表存有数据的bucket,橘黄色代表空的bucket。

扩容时map并不会立即把新数据做迁移,而是当访问原来旧bucket的数据的时候,才把旧数据做迁移,如下图:

注意:这里并不会直接删除旧的bucket,而是把原来的引用去掉,利用GC清除内存。

map中数据的删除

如果理解了map的整体结构,那么查找、更新、删除的基本步骤应该都很清楚了。这里不再赘述。

值得注意的是,找到了map中的数据之后,针对key和value分别做如下操作:

1

2

3

4

1、如果``key``是一个指针类型的,则直接将其置为空,等待GC清除;

2、如果是值类型的,则清除相关内存。

3、同理,对``value``做相同的操作。

4、最后把key对应的高位值对应的数组index置为空。


当前文章:go语言map加锁 go中map存储
网页URL:http://cdweb.net/article/doshdhc.html