网站建设资讯

NEWS

网站建设资讯

Python实现k-means算法-创新互联

本文实例为大家分享了Python实现k-means算法的具体代码,供大家参考,具体内容如下

创新互联建站专注于企业网络营销推广、网站重做改版、梨树网站定制设计、自适应品牌网站建设、HTML5电子商务商城网站建设、集团公司官网建设、成都外贸网站建设公司、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为梨树等各大城市提供网站开发制作服务。

这也是周志华《机器学习》的习题9.4。


数据集是西瓜数据集4.0,如下

编号,密度,含糖率
1,0.697,0.46
2,0.774,0.376
3,0.634,0.264
4,0.608,0.318
5,0.556,0.215
6,0.403,0.237
7,0.481,0.149
8,0.437,0.211
9,0.666,0.091
10,0.243,0.267
11,0.245,0.057
12,0.343,0.099
13,0.639,0.161
14,0.657,0.198
15,0.36,0.37
16,0.593,0.042
17,0.719,0.103
18,0.359,0.188
19,0.339,0.241
20,0.282,0.257
21,0.784,0.232
22,0.714,0.346
23,0.483,0.312
24,0.478,0.437
25,0.525,0.369
26,0.751,0.489
27,0.532,0.472
28,0.473,0.376
29,0.725,0.445
30,0.446,0.459


算法很简单,就不解释了,代码也不复杂,直接放上来:

# -*- coding: utf-8 -*- 
"""Excercise 9.4"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sys
import random

data = pd.read_csv(filepath_or_buffer = '../dataset/watermelon4.0.csv', sep = ',')[["密度","含糖率"]].values

########################################## K-means ####################################### 
k = int(sys.argv[1])
#Randomly choose k samples from data as mean vectors
mean_vectors = random.sample(data,k)

def dist(p1,p2):
  return np.sqrt(sum((p1-p2)*(p1-p2)))
while True:
  print mean_vectors
  clusters = map ((lambda x:[x]), mean_vectors) 
  for sample in data:
    distances = map((lambda m: dist(sample,m)), mean_vectors) 
    min_index = distances.index(min(distances))
    clusters[min_index].append(sample)
  new_mean_vectors = []
  for c,v in zip(clusters,mean_vectors):
    new_mean_vector = sum(c)/len(c)
    #If the difference betweenthe new mean vector and the old mean vector is less than 0.0001
    #then do not updata the mean vector
    if all(np.divide((new_mean_vector-v),v) < np.array([0.0001,0.0001]) ):
      new_mean_vectors.append(v)  
    else:
      new_mean_vectors.append(new_mean_vector)  
  if np.array_equal(mean_vectors,new_mean_vectors):
    break
  else:
    mean_vectors = new_mean_vectors 

#Show the clustering result
total_colors = ['r','y','g','b','c','m','k']
colors = random.sample(total_colors,k)
for cluster,color in zip(clusters,colors):
  density = map(lambda arr:arr[0],cluster)
  sugar_content = map(lambda arr:arr[1],cluster)
  plt.scatter(density,sugar_content,c = color)
plt.show()

新闻标题:Python实现k-means算法-创新互联
网页路径:http://cdweb.net/article/doscic.html