网站建设资讯

NEWS

网站建设资讯

java边缘检测代码 边缘检测的目标

java数字图像处理常用算法

前些时候做毕业设计 用java做的数字图像处理方面的东西 这方面的资料ms比较少 发点东西上来大家共享一下 主要就是些算法 有自己写的 有人家的 还有改人家的 有的算法写的不好 大家不要见笑

为永春等地区用户提供了全套网页设计制作服务,及永春网站建设行业解决方案。主营业务为做网站、成都网站建设、永春网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

一 读取bmp图片数据

//  获取待检测图像  数据保存在数组 nData[] nB[]  nG[]  nR[]中

public  void getBMPImage(String source) throws Exception {                    clearNData();                        //清除数据保存区         FileInputStream fs = null;               try {            fs = new FileInputStream(source);            int bfLen = ;            byte bf[] = new byte[bfLen];            fs read(bf bfLen); // 读取 字节BMP文件头            int biLen = ;            byte bi[] = new byte[biLen];            fs read(bi biLen); // 读取 字节BMP信息头

// 源图宽度            nWidth = (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) ) | (int) bi[ ] xff;

// 源图高度            nHeight = (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) ) | (int) bi[ ] xff;

// 位数            nBitCount = (((int) bi[ ] xff) ) | (int) bi[ ] xff;

// 源图大小            int nSizeImage = (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) )                    | (((int) bi[ ] xff) ) | (int) bi[ ] xff;

// 对 位BMP进行解析            if (nBitCount == ){                int nPad = (nSizeImage / nHeight) nWidth * ;                nData = new int[nHeight * nWidth];                nB=new int[nHeight * nWidth];                nR=new int[nHeight * nWidth];                nG=new int[nHeight * nWidth];                byte bRGB[] = new byte[(nWidth + nPad) * * nHeight];                fs read(bRGB (nWidth + nPad) * * nHeight);                int nIndex = ;                for (int j = ; j nHeight; j++){                    for (int i = ; i nWidth; i++) {                        nData[nWidth * (nHeight j ) + i] = ( xff)                                 | (((int) bRGB[nIndex + ] xff) )                                 | (((int) bRGB[nIndex + ] xff) )                                | (int) bRGB[nIndex] xff;                                              nB[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex] xff;                        nG[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ] xff;                        nR[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ] xff;                        nIndex += ;                    }                    nIndex += nPad;                } //               Toolkit kit = Toolkit getDefaultToolkit(); //               image = kit createImage(new MemoryImageSource(nWidth nHeight  //                       nData nWidth));

/*               //调试数据的读取

FileWriter fw = new FileWriter( C:\\Documents and Settings\\Administrator\\My Documents\\nDataRaw txt );//创建新文件                PrintWriter out = new PrintWriter(fw);                for(int j= ;jnHeight;j++){                 for(int i= ;inWidth;i++){                  out print(( * +nData[nWidth * (nHeight j ) + i])+ _                     +nR[nWidth * (nHeight j ) + i]+ _                     +nG[nWidth * (nHeight j ) + i]+ _                     +nB[nWidth * (nHeight j ) + i]+ );                                   }                 out println( );                }                out close();*/                      }        }        catch (Exception e) {            e printStackTrace();            throw new Exception(e);        }         finally {            if (fs != null) {                fs close();            }        }     //   return image;    }

二 由r g b 获取灰度数组

public  int[] getBrightnessData(int rData[] int gData[] int bData[]){          int brightnessData[]=new int[rData length];     if(rData length!=gData length || rData length!=bData length       || bData length!=gData length){      return brightnessData;     }     else {      for(int i= ;ibData length;i++){       double temp= *rData[i]+ *gData[i]+ *bData[i];       brightnessData[i]=(int)(temp)+((temp (int)(temp)) ? : );      }      return brightnessData;     }          } 

三 直方图均衡化

public int [] equilibrateGray(int[] PixelsGray int width int height)     {                  int gray;         int length=PixelsGray length;         int FrequenceGray[]=new int[length];          int SumGray[]=new int[ ];          int ImageDestination[]=new int[length];         for(int i = ; i length ;i++)         {            gray=PixelsGray[i];               FrequenceGray[gray]++;         }           //    灰度均衡化          SumGray[ ]=FrequenceGray[ ];          for(int i= ;i ;i++){               SumGray[i]=SumGray[i ]+FrequenceGray[i];           }         for(int i= ;i ;i++) {               SumGray[i]=(int)(SumGray[i]* /length);           }         for(int i= ;iheight;i++)          {                for(int j= ;jwidth;j++)               {                   int k=i*width+j;                   ImageDestination[k]= xFF | ((SumGray[PixelsGray[k]]                             ) | (SumGray[PixelsGray[k]] ) | SumGray[PixelsGray[k]]);                }           }         return ImageDestination;      } 

四 laplace 阶滤波 增强边缘 图像锐化

public int[] laplace DFileter(int []data int width int height){         int filterData[]=new int[data length];     int min= ;     int max= ;     for(int i= ;iheight;i++){      for(int j= ;jwidth;j++){       if(i== || i==height || j== || j==width )               filterData[i*width+j]=data[i*width+j];       else        filterData[i*width+j]= *data[i*width+j] data[i*width+j ] data[i*width+j+ ]                             data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ]                             data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ];              if(filterData[i*width+j]min)        min=filterData[i*width+j];       if(filterData[i*width+j]max)        max=filterData[i*width+j];      }       }//     System out println( max: +max);//     System out println( min: +min);          for(int i= ;iwidth*height;i++){      filterData[i]=(filterData[i] min)* /(max min);     }     return filterData;    } 

五 laplace 阶增强滤波 增强边缘 增强系数delt

public int[] laplaceHigh DFileter(int []data int width int height double delt){          int filterData[]=new int[data length];     int min= ;     int max= ;     for(int i= ;iheight;i++){      for(int j= ;jwidth;j++){       if(i== || i==height || j== || j==width )               filterData[i*width+j]=(int)(( +delt)*data[i*width+j]);       else        filterData[i*width+j]=(int)(( +delt)*data[i*width+j] data[i*width+j ]) data[i*width+j+ ]                             data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ]                             data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ];              if(filterData[i*width+j]min)        min=filterData[i*width+j];       if(filterData[i*width+j]max)        max=filterData[i*width+j];      }       }     for(int i= ;iwidth*height;i++){      filterData[i]=(filterData[i] min)* /(max min);     }     return filterData;    }  六 局部阈值处理 值化

//   局部阈值处理 值化 niblack s   method    /*原理             T(x y)=m(x y)   +   k*s(x y)            取一个宽度为w的矩形框 (x y)为这个框的中心          统计框内数据 T(x y)为阈值 m(x y)为均值 s(x y)为均方差 k为参数(推荐 )计算出t再对(x y)进行切割 /             这个算法的优点是     速度快 效果好             缺点是     niblack s   method会产生一定的噪声        */        public int[] localThresholdProcess(int []data int width int height int w int h double coefficients double gate){     int[] processData=new int[data length];     for(int i= ;idata length;i++){      processData[i]= ;     }          if(data length!=width*height)      return processData;          int wNum=width/w;     int hNum=height/h;     int delt[]=new int[w*h];          //System out println( w; +w+   h: +h+   wNum: +wNum+ hNum: +hNum);          for(int j= ;jhNum;j++){      for(int i= ;iwNum;i++){     //for(int j= ;j ;j++){     // for(int i= ;i ;i++){         for(int n= ;nh;n++)               for(int k= ;kw;k++){                delt[n*w+k]=data[(j*h+n)*width+i*w+k];                //System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ );               }        //System out println();        /*        for(int n= ;nh;n++)               for(int k= ;kw;k++){                System out print( data[ +((j*h+n)*width+i*w+k)+ ]: +data[(j*h+n)*width+i*w+k]+ );               }        System out println();        */        delt=thresholdProcess(delt w h coefficients gate);        for(int n= ;nh;n++)               for(int k= ;kw;k++){                processData[(j*h+n)*width+i*w+k]=delt[n*w+k];               // System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ );               }        //System out println();        /*        for(int n= ;nh;n++)               for(int k= ;kw;k++){                System out print( processData[ +((j*h+n)*width+i*w+k)+ ]: +processData[(j*h+n)*width+i*w+k]+ );               }        System out println();        */      }      }          return processData;    } 

七 全局阈值处理 值化

public int[] thresholdProcess(int []data int width int height double coefficients double gate){     int [] processData=new int[data length];     if(data length!=width*height)      return processData;     else{      double sum= ;      double average= ;      double variance= ;      double threshold;            if( gate!= ){       threshold=gate;       }      else{            for(int i= ;iwidth*height;i++){            sum+=data[i];            }            average=sum/(width*height);                  for(int i= ;iwidth*height;i++){              variance+=(data[i] average)*(data[i] average);            }            variance=Math sqrt(variance);            threshold=average coefficients*variance;      }               for(int i= ;iwidth*height;i++){          if(data[i]threshold)             processData[i]= ;          else                 processData[i]= ;         }               return processData;       }    } 

八  垂直边缘检测 sobel算子

public int[] verticleEdgeCheck(int []data int width int height int sobelCoefficients) throws Exception{     int filterData[]=new int[data length];     int min= ;     int max= ;     if(data length!=width*height)      return filterData;          try{            for(int i= ;iheight;i++){       for(int j= ;jwidth;j++){        if(i== || i== || i==height || i==height            ||j== || j== || j==width || j==width ){               filterData[i*width+j]=data[i*width+j];         }         else{          double average;            //中心的九个像素点             //average=data[i*width+j] Math sqrt( )*data[i*width+j ]+Math sqrt( )*data[i*width+j+ ]          average=data[i*width+j] sobelCoefficients*data[i*width+j ]+sobelCoefficients*data[i*width+j+ ]                         data[(i )*width+j ]+data[(i )*width+j+ ]                     data[(i+ )*width+j ]+data[(i+ )*width+j+ ];             filterData[i*width+j]=(int)(average);         }               if(filterData[i*width+j]min)         min=filterData[i*width+j];         if(filterData[i*width+j]max)         max=filterData[i*width+j];        }        }       for(int i= ;iwidth*height;i++){        filterData[i]=(filterData[i] min)* /(max min);         }          }     catch (Exception e)      {            e printStackTrace();            throw new Exception(e);        }            return filterData;    } 

九  图像平滑 * 掩模处理(平均处理) 降低噪声

lishixinzhi/Article/program/Java/hx/201311/26286

如何对BMP格式图像进行边缘检测或轮廓提取?

文件名称: 图象的边沿检测与提取,轮廓跟踪算法代码下载 收藏√ [ 5 4 3 2 1 ] 所属分类: GDI-Bitmap 开发工具: C-C++ 文件大小: 31 KB 上传时间: 2005-04-07 下载次数: 66 提 供 者: 罗丁 详细说明:图像处理程序代码,图像边缘检测与提取,轮廓跟踪算法-image processing code, edge detection and extraction, contour tracking algorithm

[上载源码成为会员下载此源码] [成为VIP会员下载此源码...] 近期下载过的用户: 柯萌 ZITAN lgmlgm 许述文 [查看上载者罗丁的更多信息] 相关搜索: 轮廓跟踪 图像处理 轮廓跟踪算法 边缘检测 图像边缘检测与提取 图像轮廓提取原代码 图像 跟踪 图像边缘检测

Scanner在java中有什么用法怎么用

1、首先在一个java工程下创建一个类名的ScannerDemo的类。

2、然后创建一个Scanner类对象,让它接收从键盘输入的数据。

3、这里利用的nextLine方法接收字符串。next方法其实也是可以获取字符串的。但是next不能获取空格,比如输入Hello World,使用next方法只会得到Hello;而使用nextLine方法会得到完整的Hello World;因为nextLine方法是以回车键为结束标识的。

4、在程序窗口空白处,点击右键,选择Run As ——Java Application。

5、这时在控制台中,输入字符串,按回车。可以看到利用Scanner类的nextLine成功接收到字符串。

6、当然Scanner除能接收字符串之外,像整数,浮点数也是可以接收的,都有对应的方法。下面就以接收整数为例,其他类型的也差不多,可以自己尝试一下。

7、运行查看结果,可以看到nextInt()只能接收整数。想要接收其他类型的数据就得用其他方法了。

扩展资料:

Scanner类常用方法

1、String next():接收控制台输入的字符串(备注:不能将空格作为字符串接收);

2、String nextLine():接收控制台输入的字符串;

3、int nextInt():接收控制台输入的int类型的数据;

4、double nextDouble:接收控制台输入的double 类型的数据;

5、boolean nextBoolean():接收控制台输入的boolean 类型的数据;

6、输入char类型的数据;

Scanner类没有直接输入char类型的方法,可以通过charAt()方法从next()或nexyLine()获取。

参考资料:百度百科-计算机编程语言

一段java的canny边缘检测代码,求详细注解,越详细越好

汗个,这段代码倒是有点像android的

就是将图片大小排放计算出来显示;

要注释啊,传源文件上来才好搞哦。里面有不少自定义的类和方法

如:image2pixels();


文章名称:java边缘检测代码 边缘检测的目标
标题URL:http://cdweb.net/article/dojsoge.html