网站建设资讯

NEWS

网站建设资讯

TensorFlow2的CNN图像分类方法是什么-创新互联

这篇文章主要讲解了“TensorFlow2的CNN图像分类方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“TensorFlow2的CNN图像分类方法是什么”吧!

我们提供的服务有:网站建设、成都网站设计、微信公众号开发、网站优化、网站认证、凉山州ssl等。为近千家企事业单位解决了网站和推广的问题。提供周到的售前咨询和贴心的售后服务,是有科学管理、有技术的凉山州网站制作公司

  1. 导包

  import matplotlib.pyplot as plt

  import numpy as np

  import pandas as pd

  import tensorflow as tf

  from sklearn.preprocessing import StandardScaler

  from sklearn.model_selection import train_test_split

  2. 图像分类 fashion_mnist

  数据处理

  # 原始数据

  (X_train_all, y_train_all),(X_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()

  # 训练集、验证集拆分

  X_train, X_valid, y_train, y_valid = train_test_split(X_train_all, y_train_all, test_size=0.25)

  # 数据标准化,你也可以用除以255的方式实现归一化

  # 注意最后reshape中的1,代表图像只有一个channel,即当前图像是灰度图

  scaler = StandardScaler()

  X_train_scaled = scaler.fit_transform(X_train.reshape(-1, 28 * 28)).reshape(-1, 28, 28, 1)

  X_valid_scaled = scaler.transform(X_valid.reshape(-1, 28 * 28)).reshape(-1, 28, 28, 1)

  X_test_scaled = scaler.transform(X_test.reshape(-1, 28 * 28)).reshape(-1, 28, 28, 1)

  构建CNN模型

  model = tf.keras.models.Sequential()

  # 多个卷积层

  model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=[5, 5], padding="same", activation="relu", input_shape=(28, 28, 1)))

  model.add(tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2))

  model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=[5, 5], padding="same", activation="relu"))

  model.add(tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2))

  # 将前面卷积层得出的多维数据转为一维

  # 7和前面的kernel_size、padding、MaxPool2D有关

  # Conv2D: 28*28 -> 28*28 (因为padding="same")

  # MaxPool2D: 28*28 -> 14*14

  # Conv2D: 14*14 -> 14*14 (因为padding="same")

  # MaxPool2D: 14*14 -> 7*7

  model.add(tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,)))

  # 传入全连接层

  model.add(tf.keras.layers.Dense(1024, activation="relu"))

  model.add(tf.keras.layers.Dense(10, activation="softmax"))

  # compile

  model.compile(loss = "sparse_categorical_crossentropy",

  optimizer = "sgd",

  metrics = ["accuracy"])

  模型训练

  callbacks = [

  tf.keras.callbacks.EarlyStopping(min_delta=1e-3, patience=5)

  ]

  history = model.fit(X_train_scaled, y_train, epochs=15,

  validation_data=(X_valid_scaled, y_valid),

  callbacks = callbacks)

  Train on 50000 samples, validate on 10000 samples

  Epoch 1/15

  50000/50000 [==============================] - 17s 343us/sample - loss: 0.5707 - accuracy: 0.7965 - val_loss: 0.4631 - val_accuracy: 0.8323

  Epoch 2/15

  50000/50000 [==============================] - 13s 259us/sample - loss: 0.3728 - accuracy: 0.8669 - val_loss: 0.3573 - val_accuracy: 0.8738

  ...

  Epoch 13/15

  50000/50000 [==============================] - 12s 244us/sample - loss: 0.1625 - accuracy: 0.9407 - val_loss: 0.2489 - val_accuracy: 0.9112

  Epoch 14/15

  50000/50000 [==============================] - 12s 240us/sample - loss: 0.1522 - accuracy: 0.9451 - val_loss: 0.2584 - val_accuracy: 0.9104

  Epoch 15/15

  50000/50000 [==============================] - 12s 237us/sample - loss: 0.1424 - accuracy: 0.9500 - val_loss: 0.2521 - val_accuracy: 0.9114

  作图

  def plot_learning_curves(history):

  pd.DataFrame(history.history).plot(figsize=(8, 5))

  plt.grid(True)

  #plt.gca().set_ylim(0, 1)

  plt.show()

  plot_learning_curves(history)

  测试集评估准确率

  model.evaluate(X_test_scaled, y_test)

  [0.269884311157465, 0.9071]

  可以看到使用CNN后,图像分类的准确率明显提升了。之前的模型是0.8747,现在是0.9071。

  3. 图像分类 Dogs vs. Cats

  3.1 原始数据

  原始数据下载

  Kaggle: /tupian/20230522/pp  百度网盘: /tupian/20230522/init 提取码 dmp4

  读取一张图片,并展示

  image_string = tf.io.read_file("C:/Users/Skey/Downloads/datasets/cat_vs_dog/train/cat.28.jpg")

  image_decoded = tf.image.decode_jpeg(image_string)

  plt.imshow(image_decoded)

  3.2 利用Dataset加载图片

  由于原始图片过多,我们不能将所有图片一次加载入内存。Tensorflow为我们提供了便利的Dataset API,可以从硬盘中一批一批的加载数据,以用于训练。

  处理本地图片路径与标签

  # 训练数据的路径

  train_dir = "C:/Users/Skey/Downloads/datasets/cat_vs_dog/train/"

  train_filenames = [] # 所有图片的文件名

  train_labels = [] # 所有图片的标签

  for filename in os.listdir(train_dir):

  train_filenames.append(train_dir + filename)

  if (filename.startswith("cat")):

  train_labels.append(0) # 将cat标记为0

  else:

  train_labels.append(1) # 将dog标记为1

  # 数据随机拆分郑州人流哪家医院做的好 http://www.csyhjlyy.com/

  X_train, X_valid, y_train, y_valid = train_test_split(train_filenames, train_labels, test_size=0.2)

  定义一个解码图片的方法

  def _decode_and_resize(filename, label):

  image_string = tf.io.read_file(filename) # 读取图片

  image_decoded = tf.image.decode_jpeg(image_string) # 解码

  image_resized = tf.image.resize(image_decoded, [256, 256]) / 255.0 # 重置size,并归一化

  return image_resized, label

  定义 Dataset,用于加载图片数据

  # 训练集

  train_dataset = tf.data.Dataset.from_tensor_slices((train_filenames, train_labels))

  train_dataset = train_dataset.map(

  map_func=_decode_and_resize, # 调用前面定义的方法,解析filename,转为特征和标签

  num_parallel_calls=tf.data.experimental.AUTOTUNE)

  train_dataset = train_dataset.shuffle(buffer_size=128) # 设置缓冲区大小

  train_dataset = train_dataset.batch(32) # 每批数据的量

  train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE) # 启动预加载图片,也就是说CPU会提前从磁盘加载数据,不用等上一次训练完后再加载

  # 验证集

  valid_dataset = tf.data.Dataset.from_tensor_slices((valid_filenames, valid_labels))

  valid_dataset = valid_dataset.map(

  map_func=_decode_and_resize,

  num_parallel_calls=tf.data.experimental.AUTOTUNE)

  valid_dataset = valid_dataset.batch(32)

  3.3 构建CNN模型,并训练

  构建模型与编译

  model = tf.keras.Sequential([

  # 卷积,32个filter(卷积核),每个大小为3*3,步长为1

  tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(256, 256, 3)),

  # 池化,默认大小2*2,步长为2

  tf.keras.layers.MaxPooling2D(),

  tf.keras.layers.Conv2D(32, 5, activation='relu'),

  tf.keras.layers.MaxPooling2D(),

  tf.keras.layers.Flatten(),

  tf.keras.layers.Dense(64, activation='relu'),

  tf.keras.layers.Dense(2, activation='softmax')

  ])

  model.compile(

  optimizer=tf.keras.optimizers.Adam(learning_rate=0.001),

  loss=tf.keras.losses.sparse_categorical_crossentropy,

  metrics=[tf.keras.metrics.sparse_categorical_accuracy]

  )

  模型总览

  model.summary()

  Model: "sequential_1"

  _________________________________________________________________

  Layer (type) Output Shape Param #

  =================================================================

  conv2d_2 (Conv2D) (None, 254, 254, 32) 896

  _________________________________________________________________

  max_pooling2d_2 (MaxPooling2 (None, 127, 127, 32) 0

  _________________________________________________________________

  conv2d_3 (Conv2D) (None, 123, 123, 32) 25632

  _________________________________________________________________

  max_pooling2d_3 (MaxPooling2 (None, 61, 61, 32) 0

  _________________________________________________________________

  flatten_1 (Flatten) (None, 119072) 0

  _________________________________________________________________

  dense_2 (Dense) (None, 64) 7620672

  _________________________________________________________________

  dense_3 (Dense) (None, 2) 130

  =================================================================

  Total params: 7,647,330

  Trainable params: 7,647,330

  Non-trainable params: 0

  开始训练

  model.fit(train_dataset, epochs=10, validation_data=valid_dataset)

  由于数据量大,此处训练时间较久

  需要注意的是此处打印的step,每个step指的是一个batch(例如32个样本一个batch)

  模型评估

  test_dataset = tf.data.Dataset.from_tensor_slices((valid_filenames, valid_labels))

  test_dataset = test_dataset.map(_decode_and_resize)

  test_dataset = test_dataset.batch(32)

  print(model.metrics_names)

  print(model.evaluate(test_dataset))

感谢各位的阅读,以上就是“TensorFlow2的CNN图像分类方法是什么”的内容了,经过本文的学习后,相信大家对TensorFlow2的CNN图像分类方法是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


当前文章:TensorFlow2的CNN图像分类方法是什么-创新互联
文章转载:http://cdweb.net/article/dieoio.html