如何在pytorch中存储模型?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
为邵东等地区用户提供了全套网页设计制作服务,及邵东网站建设行业解决方案。主营业务为成都网站设计、成都网站建设、外贸网站建设、邵东网站设计,以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。我们深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!1、保存整个网络结构信息和模型参数信息:
torch.save(model_object, './model.pth')
直接加载即可使用:
model = torch.load('./model.pth')
2、只保存网络的模型参数-推荐使用
torch.save(model_object.state_dict(), './params.pth')
加载则要先从本地网络模块导入网络,然后再加载参数:
from models import AgeModel model = AgeModel() model.load_state_dict(torch.load('./params.pth'))pytorch的优点
1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单
关于如何在pytorch中存储模型问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。