终于找到bug原因!记一下;还是不熟悉平台的原因造成的!
创新互联公司服务项目包括贡嘎网站建设、贡嘎网站制作、贡嘎网页制作以及贡嘎网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,贡嘎网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到贡嘎省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!Q:为什么会出现两个模型对象在同一个文件中一起运行,当直接读取他们分开运行时训练出来的模型会出错,而且总是有一个正确,一个读取错误? 而 直接在同一个文件又训练又重新加载模型预测不出错,而且更诡异的是此时用分文件里的对象加载模型不会出错?
model.py,里面含有 ModelV 和 ModelP,另外还有 modelP.py 和 modelV.py 分别只含有 ModelP 和 ModeV 这两个对象,先使用 modelP.py 和 modelV.py 分别训练好模型,然后再在 model.py 里加载进来:
# -*- coding: utf8 -*- import tensorflow as tf class ModelV(): def __init__(self): self.v1 = tf.Variable(66, name="v1") self.v2 = tf.Variable(77, name="v2") self.save_path = "model_v/model.ckpt" self.init = tf.global_variables_initializer() self.saver = tf.train.Saver() self.sess = tf.Session() def train(self): self.sess.run(self.init) print 'v2', self.v2.eval(self.sess) self.saver.save(self.sess, self.save_path) print "ModelV saved." def predict(self): all_vars = tf.trainable_variables() for v in all_vars: print(v.name) self.saver.restore(self.sess, self.save_path) print "ModelV restored." print 'v2', self.v2.eval(self.sess) print '------------------------------------------------------------------' class ModelP(): def __init__(self): self.p1 = tf.Variable(88, name="p1") self.p2 = tf.Variable(99, name="p2") self.save_path = "model_p/model.ckpt" self.init = tf.global_variables_initializer() self.saver = tf.train.Saver() self.sess = tf.Session() def train(self): self.sess.run(self.init) print 'p2', self.p2.eval(self.sess) self.saver.save(self.sess, self.save_path) print "ModelP saved." def predict(self): all_vars = tf.trainable_variables() for v in all_vars: print v.name self.saver.restore(self.sess, self.save_path) print "ModelP restored." print 'p2', self.p2.eval(self.sess) print '---------------------------------------------------------------------' if __name__ == '__main__': v = ModelV() p = ModelP() v.predict() #v.train() p.predict() #p.train()